
MATLAB®

Primer

R2014a

 irmgn.ir

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Primer

© COPYRIGHT 1984–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

 irmgn.ir

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
December 1996 First printing For MATLAB 5
May 1997 Second printing For MATLAB 5.1
September 1998 Third printing For MATLAB 5.3
September 2000 Fourth printing Revised for MATLAB 6 (Release 12)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
August 2002 Fifth printing Revised for MATLAB 6.5
June 2004 Sixth printing Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Seventh printing Minor revision for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online only Minor revision for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Minor revision for MATLAB 7.2 (Release 2006a)
September 2006 Eighth printing Minor revision for MATLAB 7.3 (Release 2006b)
March 2007 Ninth printing Minor revision for MATLAB 7.4 (Release 2007a)
September 2007 Tenth printing Minor revision for MATLAB 7.5 (Release 2007b)
March 2008 Eleventh printing Minor revision for MATLAB 7.6 (Release 2008a)
October 2008 Twelfth printing Minor revision for MATLAB 7.7 (Release 2008b)
March 2009 Thirteenth printing Minor revision for MATLAB 7.8 (Release 2009a)
September 2009 Fourteenth printing Minor revision for MATLAB 7.9 (Release 2009b)
March 2010 Fifteenth printing Minor revision for MATLAB 7.10 (Release 2010a)
September 2010 Sixteenth printing Revised for MATLAB 7.11 (R2010b)
April 2011 Online only Revised for MATLAB 7.12 (R2011a)
September 2011 Seventeenth printing Revised for MATLAB 7.13 (R2011b)
March 2012 Eighteenth printing Revised for Version 7.14 (R2012a)(Renamed from

MATLAB Getting Started Guide)
September 2012 Nineteenth printing Revised for Version 8.0 (R2012b)
March 2013 Twentieth printing Revised for Version 8.1 (R2013a)
September 2013 Twenty-first printing Revised for Version 8.2 (R2013b)
March 2014 Twenty-second printing Revised for Version 8.3 (R2014a)

 irmgn.ir

 irmgn.ir

Contents

Quick Start

1
MATLAB Product Description . 1-2
Key Features . 1-2

Desktop Basics . 1-3

Matrices and Arrays . 1-6
Array Creation . 1-6
Matrix and Array Operations . 1-7
Concatenation . 1-9
Complex Numbers . 1-10

Array Indexing . 1-11

Workspace Variables . 1-13

Character Strings . 1-15

Calling Functions . 1-17

2-D and 3-D Plots . 1-18
Line Plots . 1-18
3-D Plots . 1-23
Subplots . 1-24

Programming and Scripts . 1-26
Sample Script . 1-26
Loops and Conditional Statements 1-27
Script Locations . 1-29

Help and Documentation . 1-30

v

 irmgn.ir

Language Fundamentals

2
Matrices and Magic Squares . 2-2
About Matrices . 2-2
Entering Matrices . 2-4
sum, transpose, and diag . 2-5
The magic Function . 2-7
Generating Matrices . 2-8

Expressions . 2-10
Variables . 2-10
Numbers . 2-11
Matrix Operators . 2-12
Array Operators . 2-12
Functions . 2-14
Examples of Expressions . 2-16

Entering Commands . 2-17
The format Function . 2-17
Suppressing Output . 2-18
Entering Long Statements . 2-19
Command Line Editing . 2-19

Indexing . 2-20
Subscripts . 2-20
The Colon Operator . 2-21
Concatenation . 2-22
Deleting Rows and Columns . 2-23
Scalar Expansion . 2-24
Logical Subscripting . 2-25
The find Function . 2-26

Types of Arrays . 2-27
Multidimensional Arrays . 2-27
Cell Arrays . 2-29
Characters and Text . 2-31
Structures . 2-34

vi Contents

 irmgn.ir

Mathematics

3
Linear Algebra . 3-2
Matrices in the MATLAB Environment 3-2
Systems of Linear Equations . 3-11
Inverses and Determinants . 3-23
Factorizations . 3-27
Powers and Exponentials . 3-35
Eigenvalues . 3-39
Singular Values . 3-43

Operations on Nonlinear Functions 3-46
Function Handles . 3-46
Function Functions . 3-46

Multivariate Data . 3-49

Data Analysis . 3-50
Introduction . 3-50
Preprocessing Data . 3-50
Summarizing Data . 3-58
Visualizing Data . 3-63
Modeling Data . 3-77

Graphics

4
Basic Plotting Functions . 4-2
Creating a Plot . 4-2
Plotting Multiple Data Sets in One Graph 4-3
Specifying Line Styles and Colors . 4-5
Plotting Lines and Markers . 4-7
Graphing Imaginary and Complex Data 4-8
Adding Plots to an Existing Graph 4-9
Figure Windows . 4-11
Displaying Multiple Plots in One Figure 4-11
Controlling the Axes . 4-12

vii

 irmgn.ir

Adding Axis Labels and Titles . 4-14
Saving Figures . 4-15

Creating Mesh and Surface Plots . 4-17
About Mesh and Surface Plots . 4-17
Visualizing Functions of Two Variables 4-17

Plotting Image Data . 4-24
About Plotting Image Data . 4-24
Reading and Writing Images . 4-25

Printing Graphics . 4-26
Overview of Printing . 4-26
Printing from the File Menu . 4-26
Exporting the Figure to a Graphics File 4-27
Using the Print Command . 4-27

Working with Handle Graphics Objects 4-29
Graphics Objects . 4-29
Setting Object Properties . 4-31
Functions for Working with Objects 4-34
Specifying Axes or Figures . 4-35
Finding the Handles of Existing Objects 4-37

Programming

5
Control Flow . 5-2
Conditional Control — if, else, switch 5-2
Loop Control — for, while, continue, break 5-5
Program Termination — return . 5-7
Vectorization . 5-8
Preallocation . 5-8

Scripts and Functions . 5-10
Overview . 5-10
Scripts . 5-11
Functions . 5-12

viii Contents

 irmgn.ir

Types of Functions . 5-14
Global Variables . 5-16
Command vs. Function Syntax . 5-16

Index

ix

 irmgn.ir

x Contents

 irmgn.ir

1

Quick Start

• “MATLAB Product Description” on page 1-2

• “Desktop Basics” on page 1-3

• “Matrices and Arrays” on page 1-6

• “Array Indexing” on page 1-11

• “Workspace Variables” on page 1-13

• “Character Strings” on page 1-15

• “Calling Functions” on page 1-17

• “2-D and 3-D Plots” on page 1-18

• “Programming and Scripts” on page 1-26

• “Help and Documentation” on page 1-30

 irmgn.ir

1 Quick Start

MATLAB Product Description
The Language of Technical Computing

MATLAB® is a high-level language and interactive environment for numerical
computation, visualization, and programming. Using MATLAB, you can
analyze data, develop algorithms, and create models and applications. The
language, tools, and built-in math functions enable you to explore multiple
approaches and reach a solution faster than with spreadsheets or traditional
programming languages, such as C/C++ or Java®. You can use MATLAB for a
range of applications, including signal processing and communications, image
and video processing, control systems, test and measurement, computational
finance, and computational biology. More than a million engineers and
scientists in industry and academia use MATLAB, the language of technical
computing.

Key Features

• High-level language for numerical computation, visualization, and
application development

• Interactive environment for iterative exploration, design, and problem
solving

• Mathematical functions for linear algebra, statistics, Fourier analysis,
filtering, optimization, numerical integration, and solving ordinary
differential equations

• Built-in graphics for visualizing data and tools for creating custom plots

• Development tools for improving code quality and maintainability and
maximizing performance

• Tools for building applications with custom graphical interfaces

• Functions for integrating MATLAB based algorithms with external
applications and languages such as C, Java, .NET, and Microsoft® Excel®

1-2

 irmgn.ir

Desktop Basics

Desktop Basics
When you start MATLAB, the desktop appears in its default layout.

The desktop includes these panels:

• Current Folder — Access your files.

• Command Window — Enter commands at the command line, indicated
by the prompt (>>).

• Workspace— Explore data that you create or import from files.

As you work in MATLAB, you issue commands that create variables and call
functions. For example, create a variable named a by typing this statement
at the command line:

1-3

 irmgn.ir

1 Quick Start

a = 1

MATLAB adds variable a to the workspace and displays the result in the
Command Window.

a =

1

Create a few more variables.

b = 2

b =

2

c = a + b

c =

3

d = cos(a)

d =

0.5403

When you do not specify an output variable, MATLAB uses the variable ans,
short for answer, to store the results of your calculation.

sin(a)

ans =

0.8415

If you end a statement with a semicolon, MATLAB performs the computation,
but suppresses the display of output in the Command Window.

e = a*b;

1-4

 irmgn.ir

Desktop Basics

You can recall previous commands by pressing the up- and down-arrow keys,
↑ and ↓. Press the arrow keys either at an empty command line or after
you type the first few characters of a command. For example, to recall the
command b = 2, type b, and then press the up-arrow key.

1-5

 irmgn.ir

1 Quick Start

Matrices and Arrays

In this section...

“Array Creation” on page 1-6

“Matrix and Array Operations” on page 1-7

“Concatenation” on page 1-9

“Complex Numbers” on page 1-10

MATLAB is an abbreviation for "matrix laboratory." While other programming
languages mostly work with numbers one at a time, MATLAB is designed to
operate primarily on whole matrices and arrays.

All MATLAB variables are multidimensional arrays, no matter what type of
data. A matrix is a two-dimensional array often used for linear algebra.

Array Creation
To create an array with four elements in a single row, separate the elements
with either a comma (,) or a space.

a = [1 2 3 4]

returns

a =

1 2 3 4

This type of array is a row vector.

To create a matrix that has multiple rows, separate the rows with semicolons.

a = [1 2 3; 4 5 6; 7 8 10]

a =

1 2 3
4 5 6
7 8 10

1-6

 irmgn.ir

Matrices and Arrays

Another way to create a matrix is to use a function, such as ones, zeros, or
rand. For example, create a 5-by-1 column vector of zeros.

z = zeros(5,1)

z =

0
0
0
0
0

Matrix and Array Operations
MATLAB allows you to process all of the values in a matrix using a single
arithmetic operator or function.

a + 10

ans =

11 12 13
14 15 16
17 18 20

sin(a)

ans =

0.8415 0.9093 0.1411
-0.7568 -0.9589 -0.2794
0.6570 0.9894 -0.5440

To transpose a matrix, use a single quote ('):

a'

ans =

1 4 7
2 5 8

1-7

 irmgn.ir

1 Quick Start

3 6 10

You can perform standard matrix multiplication, which computes the inner
products between rows and columns, using the * operator. For example,
confirm that a matrix times its inverse returns the identity matrix:

p = a*inv(a)

p =

1.0000 0 -0.0000
0 1.0000 0
0 0 1.0000

Notice that p is not a matrix of integer values. MATLAB stores numbers
as floating-point values, and arithmetic operations are sensitive to small
differences between the actual value and its floating-point representation.
You can display more decimal digits using the format command:

format long
p = a*inv(a)

p =

1.000000000000000 0 -0.000000000000000
0 1.000000000000000 0
0 0 0.999999999999998

Reset the display to the shorter format using

format short

format affects only the display of numbers, not the way MATLAB computes
or saves them.

To perform element-wise multiplication rather than matrix multiplication,
use the .* operator:

p = a.*a

p =

1-8

 irmgn.ir

Matrices and Arrays

1 4 9
16 25 36
49 64 100

The matrix operators for multiplication, division, and power each have a
corresponding array operator that operates element-wise. For example, raise
each element of a to the third power:

a.^3

ans =

1 8 27
64 125 216

343 512 1000

Concatenation
Concatenation is the process of joining arrays to make larger ones. In fact,
you made your first array by concatenating its individual elements. The pair
of square brackets [] is the concatenation operator.

A = [a,a]

A =

1 2 3 1 2 3
4 5 6 4 5 6
7 8 10 7 8 10

Concatenating arrays next to one another using commas is called horizontal
concatenation. Each array must have the same number of rows. Similarly,
when the arrays have the same number of columns, you can concatenate
vertically using semicolons.

A = [a; a]

1-9

 irmgn.ir

1 Quick Start

A =

1 2 3
4 5 6
7 8 10
1 2 3
4 5 6
7 8 10

Complex Numbers
Complex numbers have both real and imaginary parts, where the imaginary
unit is the square root of –1.

sqrt(-1)

ans =

0.0000 + 1.0000i

To represent the imaginary part of complex numbers, use either i or j.

c = [3+4i, 4+3j; -i, 10j]

c =

3.0000 + 4.0000i 4.0000 + 3.0000i
0.0000 - 1.0000i 0.0000 +10.0000i

1-10

 irmgn.ir

Array Indexing

Array Indexing
Every variable in MATLAB is an array that can hold many numbers. When
you want to access selected elements of an array, use indexing.

For example, consider the 4-by-4 magic square A:

A = magic(4)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

There are two ways to refer to a particular element in an array. The most
common way is to specify row and column subscripts, such as

A(4,2)

ans =
14

Less common, but sometimes useful, is to use a single subscript that traverses
down each column in order:

A(8)

ans =
14

Using a single subscript to refer to a particular element in an array is called
linear indexing.

If you try to refer to elements outside an array on the right side of an
assignment statement, MATLAB throws an error.

test = A(4,5)

Attempted to access A(4,5); index out of bounds because size(A)=[4,4].

1-11

 irmgn.ir

1 Quick Start

However, on the left side of an assignment statement, you can specify
elements outside the current dimensions. The size of the array increases to
accommodate the newcomers.

A(4,5) = 17

A =
16 2 3 13 0
5 11 10 8 0
9 7 6 12 0
4 14 15 1 17

To refer to multiple elements of an array, use the colon operator, which allows
you to specify a range of the form start:end. For example, list the elements
in the first three rows and the second column of A:

A(1:3,2)

ans =
2

11
7

The colon alone, without start or end values, specifies all of the elements in
that dimension. For example, select all the columns in the third row of A:

A(3,:)

ans =
9 7 6 12 0

The colon operator also allows you to create an equally spaced vector of values
using the more general form start:step:end.

B = 0:10:100

B =

0 10 20 30 40 50 60 70 80 90 100

If you omit the middle step, as in start:end, MATLAB uses the default
step value of 1.

1-12

 irmgn.ir

Workspace Variables

Workspace Variables
The workspace contains variables that you create within or import into
MATLAB from data files or other programs. For example, these statements
create variables A and B in the workspace.

A = magic(4);
B = rand(3,5,2);

You can view the contents of the workspace using whos.

whos

Name Size Bytes Class Attributes

A 4x4 128 double
B 3x5x2 240 double

The variables also appear in the Workspace pane on the desktop.

Workspace variables do not persist after you exit MATLAB. Save your data
for later use with the save command,

save myfile.mat

Saving preserves the workspace in your current working folder in a
compressed file with a .mat extension, called a MAT-file.

To clear all the variables from the workspace, use the clear command.

Restore data from a MAT-file into the workspace using load.

1-13

 irmgn.ir

1 Quick Start

load myfile.mat

1-14

 irmgn.ir

Character Strings

Character Strings
A character string is a sequence of any number of characters enclosed in
single quotes. You can assign a string to a variable.

myText = 'Hello, world';

If the text includes a single quote, use two single quotes within the definition.

otherText = 'You''re right'

otherText =

You're right

myText and otherText are arrays, like all MATLAB variables. Their class
or data type is char, which is short for character.

whos myText

Name Size Bytes Class Attributes

myText 1x12 24 char

You can concatenate strings with square brackets, just as you concatenate
numeric arrays.

longText = [myText,' - ',otherText]

longText =

Hello, world - You're right

To convert numeric values to strings, use functions, such as num2str or
int2str.

f = 71;
c = (f-32)/1.8;
tempText = ['Temperature is ',num2str(c),'C']

tempText =

1-15

 irmgn.ir

1 Quick Start

Temperature is 21.6667C

1-16

 irmgn.ir

Calling Functions

Calling Functions
MATLAB provides a large number of functions that perform computational
tasks. Functions are equivalent to subroutines or methods in other
programming languages.

To call a function, such as max, enclose its input arguments in parentheses:

A = [1 3 5];
max(A);

If there are multiple input arguments, separate them with commas:

B = [10 6 4];
max(A,B);

Return output from a function by assigning it to a variable:

maxA = max(A);

When there are multiple output arguments, enclose them in square brackets:

[maxA,location] = max(A);

Enclose any character string inputs in single quotes:

disp('hello world');

To call a function that does not require any inputs and does not return any
outputs, type only the function name:

clc

The clc function clears the Command Window.

1-17

 irmgn.ir

1 Quick Start

2-D and 3-D Plots

In this section...

“Line Plots” on page 1-18

“3-D Plots” on page 1-23

“Subplots” on page 1-24

Line Plots
To create two-dimensional line plots, use the plot function. For example, plot
the value of the sine function from 0 to :

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

1-18

 irmgn.ir

2-D and 3-D Plots

You can label the axes and add a title.

xlabel('x')
ylabel('sin(x)')
title('Plot of the Sine Function')

1-19

 irmgn.ir

1 Quick Start

By adding a third input argument to the plot function, you can plot the same
variables using a red dashed line.

plot(x,y,'r--')

1-20

 irmgn.ir

2-D and 3-D Plots

The 'r--' string is a line specification. Each specification can include
characters for the line color, style, and marker. A marker is a symbol that
appears at each plotted data point, such as a +, o, or *. For example, 'g:*'
requests a dotted green line with * markers.

Notice that the titles and labels that you defined for the first plot are no
longer in the current figure window. By default, MATLAB® clears the figure
each time you call a plotting function, resetting the axes and other elements
to prepare the new plot.

1-21

 irmgn.ir

1 Quick Start

To add plots to an existing figure, use hold.

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

hold on

y2 = cos(x);
plot(x,y2,'r:')
legend('sin','cos')

1-22

 irmgn.ir

2-D and 3-D Plots

Until you use hold off or close the window, all plots appear in the current
figure window.

3-D Plots
Three-dimensional plots typically display a surface defined by a function
in two variables, z = f(x,y) .

To evaluate z, first create a set of (x,y) points over the domain of the function
using meshgrid.

[X,Y] = meshgrid(-2:.2:2);
Z = X .* exp(-X.^2 - Y.^2);

Then, create a surface plot.

surf(X,Y,Z)

1-23

 irmgn.ir

1 Quick Start

Both the surf function and its companion mesh display surfaces in three
dimensions. surf displays both the connecting lines and the faces of the
surface in color. mesh produces wireframe surfaces that color only the lines
connecting the defining points.

Subplots
You can display multiple plots in different subregions of the same window
using the subplot function.

1-24

 irmgn.ir

2-D and 3-D Plots

For example, create four plots in a 2-by-2 grid within a figure window.

t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1); mesh(X); title('X');
subplot(2,2,2); mesh(Y); title('Y');
subplot(2,2,3); mesh(Z); title('Z');
subplot(2,2,4); mesh(X,Y,Z); title('X,Y,Z');

The first two inputs to the subplot function indicate the number of plots in
each row and column. The third input specifies which plot is active.

1-25

 irmgn.ir

1 Quick Start

Programming and Scripts

In this section...

“Sample Script” on page 1-26

“Loops and Conditional Statements” on page 1-27

“Script Locations” on page 1-29

The simplest type of MATLAB program is called a script. A script is a file
with a .m extension that contains multiple sequential lines of MATLAB
commands and function calls. You can run a script by typing its name at
the command line.

Sample Script
To create a script, use the edit command,

edit plotrand

This opens a blank file named plotrand.m. Enter some code that plots a
vector of random data:

n = 50;
r = rand(n,1);
plot(r)

Next, add code that draws a horizontal line on the plot at the mean:

m = mean(r);
hold on
plot([0,n],[m,m])
hold off
title('Mean of Random Uniform Data')

Whenever you write code, it is a good practice to add comments that describe
the code. Comments allow others to understand your code, and can refresh
your memory when you return to it later. Add comments using the percent (%)
symbol.

% Generate random data from a uniform distribution

1-26

 irmgn.ir

Programming and Scripts

% and calculate the mean. Plot the data and the mean.

n = 50; % 50 data points
r = rand(n,1);
plot(r)

% Draw a line from (0,m) to (n,m)
m = mean(r);
hold on
plot([0,n],[m,m])
hold off
title('Mean of Random Uniform Data')

Save the file in the current folder. To run the script, type its name at the
command line:

plotrand

You can also run scripts from the Editor by pressing the Run button, .

Loops and Conditional Statements
Within a script, you can loop over sections of code and conditionally execute
sections using the keywords for, while, if, and switch.

For example, create a script named calcmean.m that uses a for loop to
calculate the mean of five random samples and the overall mean.

nsamples = 5;
npoints = 50;

for k = 1:nsamples
currentData = rand(npoints,1);
sampleMean(k) = mean(currentData);

end
overallMean = mean(sampleMean)

Now, modify the for loop so that you can view the results at each iteration.
Display text in the Command Window that includes the current iteration
number, and remove the semicolon from the assignment to sampleMean.

1-27

 irmgn.ir

1 Quick Start

for k = 1:nsamples
iterationString = ['Iteration #',int2str(k)];
disp(iterationString)
currentData = rand(npoints,1);
sampleMean(k) = mean(currentData)

end
overallMean = mean(sampleMean)

When you run the script, it displays the intermediate results, and then
calculates the overall mean.

calcmean

Iteration #1

sampleMean =

0.3988

Iteration #2

sampleMean =

0.3988 0.4950

Iteration #3

sampleMean =

0.3988 0.4950 0.5365

Iteration #4

sampleMean =

0.3988 0.4950 0.5365 0.4870

Iteration #5

sampleMean =

1-28

 irmgn.ir

Programming and Scripts

0.3988 0.4950 0.5365 0.4870 0.5501

overallMean =

0.4935

In the Editor, add conditional statements to the end of calcmean.m that
display a different message depending on the value of overallMean.

if overallMean < .49
disp('Mean is less than expected')

elseif overallMean > .51
disp('Mean is greater than expected')

else
disp('Mean is within the expected range')

end

Run calcmean and verify that the correct message displays for the calculated
overallMean. For example:

overallMean =

0.5178

Mean is greater than expected

Script Locations
MATLAB looks for scripts and other files in certain places. To run a script,
the file must be in the current folder or in a folder on the search path.

By default, the MATLAB folder that the MATLAB Installer creates is on the
search path. If you want to store and run programs in another folder, add it to
the search path. Select the folder in the Current Folder browser, right-click,
and then select Add to Path.

1-29

 irmgn.ir

1 Quick Start

Help and Documentation
All MATLAB functions have supporting documentation that includes
examples and describes the function inputs, outputs, and calling syntax.
There are several ways to access this information from the command line:

• Open the function documentation in a separate window using the doc
command.

doc mean

• Display function hints (the syntax portion of the function documentation)
in the Command Window by pausing after you type the open parentheses
for the function input arguments.

mean(

• View an abbreviated text version of the function documentation in the
Command Window using the help command.

help mean

Access the complete product documentation by clicking the help icon .

1-30

 irmgn.ir

2

Language Fundamentals

• “Matrices and Magic Squares” on page 2-2

• “Expressions” on page 2-10

• “Entering Commands” on page 2-17

• “Indexing” on page 2-20

• “Types of Arrays” on page 2-27

 irmgn.ir

2 Language Fundamentals

Matrices and Magic Squares

In this section...

“About Matrices” on page 2-2

“Entering Matrices” on page 2-4

“sum, transpose, and diag” on page 2-5

“The magic Function” on page 2-7

“Generating Matrices” on page 2-8

About Matrices
In the MATLAB environment, a matrix is a rectangular array of numbers.
Special meaning is sometimes attached to 1-by-1 matrices, which are
scalars, and to matrices with only one row or column, which are vectors.
MATLAB has other ways of storing both numeric and nonnumeric data, but
in the beginning, it is usually best to think of everything as a matrix. The
operations in MATLAB are designed to be as natural as possible. Where other
programming languages work with numbers one at a time, MATLAB allows
you to work with entire matrices quickly and easily. A good example matrix,
used throughout this book, appears in the Renaissance engraving Melencolia
I by the German artist and amateur mathematician Albrecht Dürer.

2-2

 irmgn.ir

Matrices and Magic Squares

This image is filled with mathematical symbolism, and if you look carefully,
you will see a matrix in the upper-right corner. This matrix is known as a
magic square and was believed by many in Dürer’s time to have genuinely
magical properties. It does turn out to have some fascinating characteristics
worth exploring.

2-3

 irmgn.ir

2 Language Fundamentals

Entering Matrices
The best way for you to get started with MATLAB is to learn how to handle
matrices. Start MATLAB and follow along with each example.

You can enter matrices into MATLAB in several different ways:

• Enter an explicit list of elements.

• Load matrices from external data files.

• Generate matrices using built-in functions.

• Create matrices with your own functions and save them in files.

Start by entering Dürer’s matrix as a list of its elements. You only have to
follow a few basic conventions:

• Separate the elements of a row with blanks or commas.

• Use a semicolon, ; , to indicate the end of each row.

• Surround the entire list of elements with square brackets, [].

To enter Dürer’s matrix, simply type in the Command Window

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

2-4

 irmgn.ir

Matrices and Magic Squares

MATLAB displays the matrix you just entered:

A =
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

This matrix matches the numbers in the engraving. Once you have entered
the matrix, it is automatically remembered in the MATLAB workspace. You
can refer to it simply as A. Now that you have A in the workspace, take a look
at what makes it so interesting. Why is it magic?

sum, transpose, and diag
You are probably already aware that the special properties of a magic square
have to do with the various ways of summing its elements. If you take the
sum along any row or column, or along either of the two main diagonals,
you will always get the same number. Let us verify that using MATLAB.
The first statement to try is

sum(A)

MATLAB replies with

ans =
34 34 34 34

When you do not specify an output variable, MATLAB uses the variable ans,
short for answer, to store the results of a calculation. You have computed a
row vector containing the sums of the columns of A. Each of the columns has
the same sum, the magic sum, 34.

How about the row sums? MATLAB has a preference for working with the
columns of a matrix, so one way to get the row sums is to transpose the matrix,
compute the column sums of the transpose, and then transpose the result.

MATLAB has two transpose operators. The apostrophe operator (for example,
A') performs a complex conjugate transposition. It flips a matrix about its
main diagonal, and also changes the sign of the imaginary component of
any complex elements of the matrix. The dot-apostrophe operator (A.'),

2-5

 irmgn.ir

2 Language Fundamentals

transposes without affecting the sign of complex elements. For matrices
containing all real elements, the two operators return the same result.

So

A'

produces

ans =
16 5 9 4
3 10 6 15
2 11 7 14

13 8 12 1

and

sum(A')'

produces a column vector containing the row sums

ans =
34
34
34
34

For an additional way to sum the rows that avoids the double transpose use
the dimension argument for the sum function:

sum(A,2)

produces

ans =
34
34
34
34

The sum of the elements on the main diagonal is obtained with the sum and
the diag functions:

2-6

 irmgn.ir

Matrices and Magic Squares

diag(A)

produces

ans =
16
10
7
1

and

sum(diag(A))

produces

ans =
34

The other diagonal, the so-called antidiagonal, is not so important
mathematically, so MATLAB does not have a ready-made function for it.
But a function originally intended for use in graphics, fliplr, flips a matrix
from left to right:

sum(diag(fliplr(A)))
ans =

34

You have verified that the matrix in Dürer’s engraving is indeed a magic
square and, in the process, have sampled a few MATLAB matrix operations.
The following sections continue to use this matrix to illustrate additional
MATLAB capabilities.

The magic Function
MATLAB actually has a built-in function that creates magic squares of almost
any size. Not surprisingly, this function is named magic:

2-7

 irmgn.ir

2 Language Fundamentals

B = magic(4)
B =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

This matrix is almost the same as the one in the Dürer engraving and has
all the same “magic” properties; the only difference is that the two middle
columns are exchanged.

To make this B into Dürer’s A, swap the two middle columns:

A = B(:,[1 3 2 4])

This subscript indicates that—for each of the rows of matrix B—reorder the
elements in the order 1, 3, 2, 4. It produces:

A =
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Generating Matrices
MATLAB software provides four functions that generate basic matrices.

zeros All zeros

ones All ones

rand Uniformly distributed random elements

randn Normally distributed random elements

Here are some examples:

Z = zeros(2,4)
Z =

0 0 0 0
0 0 0 0

2-8

 irmgn.ir

Matrices and Magic Squares

F = 5*ones(3,3)
F =

5 5 5
5 5 5
5 5 5

N = fix(10*rand(1,10))
N =

9 2 6 4 8 7 4 0 8 4

R = randn(4,4)
R =

0.6353 0.0860 -0.3210 -1.2316
-0.6014 -2.0046 1.2366 1.0556
0.5512 -0.4931 -0.6313 -0.1132

-1.0998 0.4620 -2.3252 0.3792

2-9

 irmgn.ir

2 Language Fundamentals

Expressions

In this section...

“Variables” on page 2-10

“Numbers” on page 2-11

“Matrix Operators” on page 2-12

“Array Operators” on page 2-12

“Functions” on page 2-14

“Examples of Expressions” on page 2-16

Variables
Like most other programming languages, the MATLAB language provides
mathematical expressions, but unlike most programming languages, these
expressions involve entire matrices.

MATLAB does not require any type declarations or dimension statements.
When MATLAB encounters a new variable name, it automatically creates the
variable and allocates the appropriate amount of storage. If the variable
already exists, MATLAB changes its contents and, if necessary, allocates
new storage. For example,

num_students = 25

creates a 1-by-1 matrix named num_students and stores the value 25 in its
single element. To view the matrix assigned to any variable, simply enter
the variable name.

Variable names consist of a letter, followed by any number of letters, digits, or
underscores. MATLAB is case sensitive; it distinguishes between uppercase
and lowercase letters. A and a are not the same variable.

Although variable names can be of any length, MATLAB uses only the first
N characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make
each variable name unique in the first N characters to enable MATLAB to
distinguish variables.

2-10

 irmgn.ir

Expressions

N = namelengthmax
N =

63

Numbers
MATLAB uses conventional decimal notation, with an optional decimal point
and leading plus or minus sign, for numbers. Scientific notation uses the
letter e to specify a power-of-ten scale factor. Imaginary numbers use either i
or j as a suffix. Some examples of legal numbers are

3 -99 0.0001
9.6397238 1.60210e-20 6.02252e23
1i -3.14159j 3e5i

MATLAB stores all numbers internally using the long format specified by
the IEEE® floating-point standard. Floating-point numbers have a finite
precision of roughly 16 significant decimal digits and a finite range of roughly
10-308 to 10+308.

Numbers represented in the double format have a maximum precision of
52 bits. Any double requiring more bits than 52 loses some precision. For
example, the following code shows two unequal values to be equal because
they are both truncated:

x = 36028797018963968;
y = 36028797018963972;
x == y
ans =

1

Integers have available precisions of 8-bit, 16-bit, 32-bit, and 64-bit. Storing
the same numbers as 64-bit integers preserves precision:

x = uint64(36028797018963968);
y = uint64(36028797018963972);
x == y
ans =

0

MATLAB software stores the real and imaginary parts of a complex number.
It handles the magnitude of the parts in different ways depending on the

2-11

 irmgn.ir

2 Language Fundamentals

context. For instance, the sort function sorts based on magnitude and
resolves ties by phase angle.

sort([3+4i, 4+3i])
ans =

4.0000 + 3.0000i 3.0000 + 4.0000i

This is because of the phase angle:

angle(3+4i)
ans =

0.9273
angle(4+3i)
ans =

0.6435

The “equal to” relational operator == requires both the real and imaginary
parts to be equal. The other binary relational operators > <, >=, and <= ignore
the imaginary part of the number and consider the real part only.

Matrix Operators
Expressions use familiar arithmetic operators and precedence rules.

+ Addition

- Subtraction

* Multiplication

/ Division

\ Left division

^ Power

' Complex conjugate transpose

() Specify evaluation order

Array Operators
When they are taken away from the world of linear algebra, matrices become
two-dimensional numeric arrays. Arithmetic operations on arrays are

2-12

 irmgn.ir

Expressions

done element by element. This means that addition and subtraction are
the same for arrays and matrices, but that multiplicative operations are
different. MATLAB uses a dot, or decimal point, as part of the notation for
multiplicative array operations.

The list of operators includes

+ Addition

- Subtraction

.* Element-by-element multiplication

./ Element-by-element division

.\ Element-by-element left division

.^ Element-by-element power

.' Unconjugated array transpose

If the Dürer magic square is multiplied by itself with array multiplication

A.*A

the result is an array containing the squares of the integers from 1 to 16,
in an unusual order:

ans =
256 9 4 169
25 100 121 64
81 36 49 144
16 225 196 1

Building Tables
Array operations are useful for building tables. Suppose n is the column vector

n = (0:9)';

Then

pows = [n n.^2 2.^n]

2-13

 irmgn.ir

2 Language Fundamentals

builds a table of squares and powers of 2:

pows =
0 0 1
1 1 2
2 4 4
3 9 8
4 16 16
5 25 32
6 36 64
7 49 128
8 64 256
9 81 512

The elementary math functions operate on arrays element by element. So

format short g
x = (1:0.1:2)';
logs = [x log10(x)]

builds a table of logarithms.

logs =
1.0 0
1.1 0.04139
1.2 0.07918
1.3 0.11394
1.4 0.14613
1.5 0.17609
1.6 0.20412
1.7 0.23045
1.8 0.25527
1.9 0.27875
2.0 0.30103

Functions
MATLAB provides a large number of standard elementary mathematical
functions, including abs, sqrt, exp, and sin. Taking the square root or
logarithm of a negative number is not an error; the appropriate complex result
is produced automatically. MATLAB also provides many more advanced
mathematical functions, including Bessel and gamma functions. Most of

2-14

 irmgn.ir

Expressions

these functions accept complex arguments. For a list of the elementary
mathematical functions, type

help elfun

For a list of more advanced mathematical and matrix functions, type

help specfun
help elmat

Some of the functions, like sqrt and sin, are built in. Built-in functions are
part of the MATLAB core so they are very efficient, but the computational
details are not readily accessible. Other functions are implemented in the
MATLAB programing language, so their computational details are accessible.

There are some differences between built-in functions and other functions.
For example, for built-in functions, you cannot see the code. For other
functions, you can see the code and even modify it if you want.

Several special functions provide values of useful constants.

pi 3.14159265...

i
Imaginary unit, 1

j Same as i

eps
Floating-point relative precision,   2 52

realmin
Smallest floating-point number, 2 1022

realmax
Largest floating-point number, ()2 21023 

Inf Infinity

NaN Not-a-number

Infinity is generated by dividing a nonzero value by zero, or by evaluating
well defined mathematical expressions that overflow, that is, exceed realmax.
Not-a-number is generated by trying to evaluate expressions like 0/0 or
Inf-Inf that do not have well defined mathematical values.

2-15

 irmgn.ir

2 Language Fundamentals

The function names are not reserved. It is possible to overwrite any of them
with a new variable, such as

eps = 1.e-6

and then use that value in subsequent calculations. The original function
can be restored with

clear eps

Examples of Expressions
You have already seen several examples of MATLAB expressions. Here are a
few more examples, and the resulting values:

rho = (1+sqrt(5))/2
rho =

1.6180

a = abs(3+4i)
a =

5

z = sqrt(besselk(4/3,rho-i))
z =

0.3730+ 0.3214i

huge = exp(log(realmax))
huge =

1.7977e+308

toobig = pi*huge
toobig =

Inf

2-16

 irmgn.ir

Entering Commands

Entering Commands

In this section...

“The format Function” on page 2-17

“Suppressing Output” on page 2-18

“Entering Long Statements” on page 2-19

“Command Line Editing” on page 2-19

The format Function
The format function controls the numeric format of the values displayed. The
function affects only how numbers are displayed, not how MATLAB software
computes or saves them. Here are the different formats, together with the
resulting output produced from a vector x with components of different
magnitudes.

Note To ensure proper spacing, use a fixed-width font, such as Courier.

x = [4/3 1.2345e-6]

format short

1.3333 0.0000

format short e

1.3333e+000 1.2345e-006

format short g

1.3333 1.2345e-006

format long

1.33333333333333 0.00000123450000

2-17

 irmgn.ir

2 Language Fundamentals

format long e

1.333333333333333e+000 1.234500000000000e-006

format long g

1.33333333333333 1.2345e-006

format bank

1.33 0.00

format rat

4/3 1/810045

format hex

3ff5555555555555 3eb4b6231abfd271

If the largest element of a matrix is larger than 103 or smaller than 10-3,
MATLAB applies a common scale factor for the short and long formats.

In addition to the format functions shown above

format compact

suppresses many of the blank lines that appear in the output. This lets you
view more information on a screen or window. If you want more control over
the output format, use the sprintf and fprintf functions.

Suppressing Output
If you simply type a statement and press Return or Enter, MATLAB
automatically displays the results on screen. However, if you end the line
with a semicolon, MATLAB performs the computation, but does not display
any output. This is particularly useful when you generate large matrices.
For example,

A = magic(100);

2-18

 irmgn.ir

Entering Commands

Entering Long Statements
If a statement does not fit on one line, use an ellipsis (three periods), ...,
followed by Return or Enter to indicate that the statement continues on
the next line. For example,

s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...
- 1/8 + 1/9 - 1/10 + 1/11 - 1/12;

Blank spaces around the =, +, and - signs are optional, but they improve
readability.

Command Line Editing
Various arrow and control keys on your keyboard allow you to recall, edit,
and reuse statements you have typed earlier. For example, suppose you
mistakenly enter

rho = (1 + sqt(5))/2

You have misspelled sqrt. MATLAB responds with

Undefined function 'sqt' for input arguments of type 'double'.

Instead of retyping the entire line, simply press the ↑ key. The statement
you typed is redisplayed. Use the ← key to move the cursor over and insert
the missing r. Repeated use of the ↑ key recalls earlier lines. Typing a few
characters, and then pressing the ↑ key finds a previous line that begins with
those characters. You can also copy previously executed statements from
the Command History.

2-19

 irmgn.ir

2 Language Fundamentals

Indexing

In this section...

“Subscripts” on page 2-20

“The Colon Operator” on page 2-21

“Concatenation” on page 2-22

“Deleting Rows and Columns” on page 2-23

“Scalar Expansion” on page 2-24

“Logical Subscripting” on page 2-25

“The find Function” on page 2-26

Subscripts
The element in row i and column j of A is denoted by A(i,j). For example,
A(4,2) is the number in the fourth row and second column. For the magic
square, A(4,2) is 15. So to compute the sum of the elements in the fourth
column of A, type

A(1,4) + A(2,4) + A(3,4) + A(4,4)

This subscript produces

ans =
34

but is not the most elegant way of summing a single column.

It is also possible to refer to the elements of a matrix with a single subscript,
A(k). A single subscript is the usual way of referencing row and column
vectors. However, it can also apply to a fully two-dimensional matrix, in
which case the array is regarded as one long column vector formed from the
columns of the original matrix. So, for the magic square, A(8) is another way
of referring to the value 15 stored in A(4,2).

If you try to use the value of an element outside of the matrix, it is an error:

t = A(4,5)

2-20

 irmgn.ir

Indexing

Index exceeds matrix dimensions.

Conversely, if you store a value in an element outside of the matrix, the size
increases to accommodate the newcomer:

X = A;
X(4,5) = 17

X =
16 3 2 13 0
5 10 11 8 0
9 6 7 12 0
4 15 14 1 17

The Colon Operator
The colon, :, is one of the most important MATLAB operators. It occurs in
several different forms. The expression

1:10

is a row vector containing the integers from 1 to 10:

1 2 3 4 5 6 7 8 9 10

To obtain nonunit spacing, specify an increment. For example,

100:-7:50

is

100 93 86 79 72 65 58 51

and

0:pi/4:pi

is

0 0.7854 1.5708 2.3562 3.1416

Subscript expressions involving colons refer to portions of a matrix:

A(1:k,j)

2-21

 irmgn.ir

2 Language Fundamentals

is the first k elements of the jth column of A. Thus,

sum(A(1:4,4))

computes the sum of the fourth column. However, there is a better way to
perform this computation. The colon by itself refers to all the elements in
a row or column of a matrix and the keyword end refers to the last row or
column. Thus,

sum(A(:,end))

computes the sum of the elements in the last column of A:

ans =
34

Why is the magic sum for a 4-by-4 square equal to 34? If the integers from 1
to 16 are sorted into four groups with equal sums, that sum must be

sum(1:16)/4

which, of course, is

ans =
34

Concatenation
Concatenation is the process of joining small matrices to make bigger ones. In
fact, you made your first matrix by concatenating its individual elements. The
pair of square brackets, [], is the concatenation operator. For an example,
start with the 4-by-4 magic square, A, and form

B = [A A+32; A+48 A+16]

The result is an 8-by-8 matrix, obtained by joining the four submatrices:

2-22

 irmgn.ir

Indexing

B =

16 3 2 13 48 35 34 45
5 10 11 8 37 42 43 40
9 6 7 12 41 38 39 44
4 15 14 1 36 47 46 33

64 51 50 61 32 19 18 29
53 58 59 56 21 26 27 24
57 54 55 60 25 22 23 28
52 63 62 49 20 31 30 17

This matrix is halfway to being another magic square. Its elements are a
rearrangement of the integers 1:64. Its column sums are the correct value
for an 8-by-8 magic square:

sum(B)

ans =
260 260 260 260 260 260 260 260

But its row sums, sum(B')', are not all the same. Further manipulation is
necessary to make this a valid 8-by-8 magic square.

Deleting Rows and Columns
You can delete rows and columns from a matrix using just a pair of square
brackets. Start with

X = A;

Then, to delete the second column of X, use

X(:,2) = []

This changes X to

X =
16 2 13
5 11 8
9 7 12
4 14 1

2-23

 irmgn.ir

2 Language Fundamentals

If you delete a single element from a matrix, the result is not a matrix
anymore. So, expressions like

X(1,2) = []

result in an error. However, using a single subscript deletes a single element,
or sequence of elements, and reshapes the remaining elements into a row
vector. So

X(2:2:10) = []

results in

X =
16 9 2 7 13 12 1

Scalar Expansion
Matrices and scalars can be combined in several different ways. For example,
a scalar is subtracted from a matrix by subtracting it from each element. The
average value of the elements in our magic square is 8.5, so

B = A - 8.5

forms a matrix whose column sums are zero:

B =
7.5 -5.5 -6.5 4.5

-3.5 1.5 2.5 -0.5
0.5 -2.5 -1.5 3.5

-4.5 6.5 5.5 -7.5

sum(B)

ans =
0 0 0 0

With scalar expansion, MATLAB assigns a specified scalar to all indices in a
range. For example,

B(1:2,2:3) = 0

zeros out a portion of B:

2-24

 irmgn.ir

Indexing

B =
7.5 0 0 4.5

-3.5 0 0 -0.5
0.5 -2.5 -1.5 3.5

-4.5 6.5 5.5 -7.5

Logical Subscripting
The logical vectors created from logical and relational operations can be used
to reference subarrays. Suppose X is an ordinary matrix and L is a matrix of
the same size that is the result of some logical operation. Then X(L) specifies
the elements of X where the elements of L are nonzero.

This kind of subscripting can be done in one step by specifying the logical
operation as the subscripting expression. Suppose you have the following
set of data:

x = [2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8];

The NaN is a marker for a missing observation, such as a failure to respond to
an item on a questionnaire. To remove the missing data with logical indexing,
use isfinite(x), which is true for all finite numerical values and false for
NaN and Inf:

x = x(isfinite(x))
x =

2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

Now there is one observation, 5.1, which seems to be very different from the
others. It is an outlier. The following statement removes outliers, in this case
those elements more than three standard deviations from the mean:

x = x(abs(x-mean(x)) <= 3*std(x))
x =

2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8

For another example, highlight the location of the prime numbers in Dürer’s
magic square by using logical indexing and scalar expansion to set the
nonprimes to 0. (See “The magic Function” on page 2-7.)

A(~isprime(A)) = 0

2-25

 irmgn.ir

2 Language Fundamentals

A =
0 3 2 13
5 0 11 0
0 0 7 0
0 0 0 0

The find Function
The find function determines the indices of array elements that meet a given
logical condition. In its simplest form, find returns a column vector of indices.
Transpose that vector to obtain a row vector of indices. For example, start
again with Dürer’s magic square. (See “The magic Function” on page 2-7.)

k = find(isprime(A))'

picks out the locations, using one-dimensional indexing, of the primes in the
magic square:

k =
2 5 9 10 11 13

Display those primes, as a row vector in the order determined by k, with

A(k)

ans =
5 3 2 11 7 13

When you use k as a left-side index in an assignment statement, the matrix
structure is preserved:

A(k) = NaN

A =
16 NaN NaN NaN

NaN 10 NaN 8
9 6 NaN 12
4 15 14 1

2-26

 irmgn.ir

Types of Arrays

Types of Arrays

In this section...

“Multidimensional Arrays” on page 2-27

“Cell Arrays” on page 2-29

“Characters and Text” on page 2-31

“Structures” on page 2-34

Multidimensional Arrays
Multidimensional arrays in the MATLAB environment are arrays with more
than two subscripts. One way of creating a multidimensional array is by
calling zeros, ones, rand, or randn with more than two arguments. For
example,

R = randn(3,4,5);

creates a 3-by-4-by-5 array with a total of 3*4*5 = 60 normally distributed
random elements.

A three-dimensional array might represent three-dimensional physical data,
say the temperature in a room, sampled on a rectangular grid. Or it might
represent a sequence of matrices, A(k), or samples of a time-dependent matrix,
A(t). In these latter cases, the (i, j)th element of the kth matrix, or the tkth
matrix, is denoted by A(i,j,k).

MATLAB and Dürer’s versions of the magic square of order 4 differ by an
interchange of two columns. Many different magic squares can be generated
by interchanging columns. The statement

p = perms(1:4);

generates the 4! = 24 permutations of 1:4. The kth permutation is the row
vector p(k,:). Then

A = magic(4);
M = zeros(4,4,24);

2-27

 irmgn.ir

2 Language Fundamentals

for k = 1:24
M(:,:,k) = A(:,p(k,:));

end

stores the sequence of 24 magic squares in a three-dimensional array, M. The
size of M is

size(M)

ans =
4 4 24

Note The order of the matrices shown in this illustration might differ from
your results. The perms function always returns all permutations of the input
vector, but the order of the permutations might be different for different
MATLAB versions.

The statement

sum(M,d)

computes sums by varying the dth subscript. So

sum(M,1)

2-28

 irmgn.ir

Types of Arrays

is a 1-by-4-by-24 array containing 24 copies of the row vector

34 34 34 34

and

sum(M,2)

is a 4-by-1-by-24 array containing 24 copies of the column vector

34
34
34
34

Finally,

S = sum(M,3)

adds the 24 matrices in the sequence. The result has size 4-by-4-by-1, so
it looks like a 4-by-4 array:

S =
204 204 204 204
204 204 204 204
204 204 204 204
204 204 204 204

Cell Arrays
Cell arrays in MATLAB are multidimensional arrays whose elements are
copies of other arrays. A cell array of empty matrices can be created with
the cell function. But, more often, cell arrays are created by enclosing a
miscellaneous collection of things in curly braces, {}. The curly braces are
also used with subscripts to access the contents of various cells. For example,

C = {A sum(A) prod(prod(A))}

produces a 1-by-3 cell array. The three cells contain the magic square, the
row vector of column sums, and the product of all its elements. When C
is displayed, you see

C =

2-29

 irmgn.ir

2 Language Fundamentals

[4x4 double] [1x4 double] [20922789888000]

This is because the first two cells are too large to print in this limited space,
but the third cell contains only a single number, 16!, so there is room to
print it.

Here are two important points to remember. First, to retrieve the contents of
one of the cells, use subscripts in curly braces. For example, C{1} retrieves
the magic square and C{3} is 16!. Second, cell arrays contain copies of other
arrays, not pointers to those arrays. If you subsequently change A, nothing
happens to C.

You can use three-dimensional arrays to store a sequence of matrices of the
same size. Cell arrays can be used to store a sequence of matrices of different
sizes. For example,

M = cell(8,1);
for n = 1:8

M{n} = magic(n);
end
M

produces a sequence of magic squares of different order:

M =
[1]
[2x2 double]
[3x3 double]
[4x4 double]
[5x5 double]
[6x6 double]
[7x7 double]
[8x8 double]

2-30

 irmgn.ir

Types of Arrays

You can retrieve the 4-by-4 magic square matrix with

M{4}

Characters and Text
Enter text into MATLAB using single quotes. For example,

s = 'Hello'

The result is not the same kind of numeric matrix or array you have been
dealing with up to now. It is a 1-by-5 character array.

2-31

 irmgn.ir

2 Language Fundamentals

Internally, the characters are stored as numbers, but not in floating-point
format. The statement

a = double(s)

converts the character array to a numeric matrix containing floating-point
representations of the ASCII codes for each character. The result is

a =
72 101 108 108 111

The statement

s = char(a)

reverses the conversion.

Converting numbers to characters makes it possible to investigate the various
fonts available on your computer. The printable characters in the basic ASCII
character set are represented by the integers 32:127. (The integers less than
32 represent nonprintable control characters.) These integers are arranged in
an appropriate 6-by-16 array with

F = reshape(32:127,16,6)';

The printable characters in the extended ASCII character set are represented
by F+128. When these integers are interpreted as characters, the result
depends on the font currently being used. Type the statements

char(F)
char(F+128)

and then vary the font being used for the Command Window. To
change the font, on the Home tab, in the Environment section, click
Preferences > Fonts. If you include tabs in lines of code, use a fixed-width
font, such as Monospaced, to align the tab positions on different lines.

Concatenation with square brackets joins text variables together into larger
strings. The statement

h = [s, ' world']

2-32

 irmgn.ir

Types of Arrays

joins the strings horizontally and produces

h =
Hello world

The statement

v = [s; 'world']

joins the strings vertically and produces

v =
Hello
world

Notice that a blank has to be inserted before the 'w' in h and that both words
in v have to have the same length. The resulting arrays are both character
arrays; h is 1-by-11 and v is 2-by-5.

To manipulate a body of text containing lines of different lengths, you have
two choices—a padded character array or a cell array of strings. When
creating a character array, you must make each row of the array the same
length. (Pad the ends of the shorter rows with spaces.) The char function does
this padding for you. For example,

S = char('A','rolling','stone','gathers','momentum.')

produces a 5-by-9 character array:

S =
A
rolling
stone
gathers
momentum.

Alternatively, you can store the text in a cell array. For example,

C = {'A';'rolling';'stone';'gathers';'momentum.'}

creates a 5-by-1 cell array that requires no padding because each row of the
array can have a different length:

2-33

 irmgn.ir

2 Language Fundamentals

C =
'A'
'rolling'
'stone'
'gathers'
'momentum.'

You can convert a padded character array to a cell array of strings with

C = cellstr(S)

and reverse the process with

S = char(C)

Structures
Structures are multidimensional MATLAB arrays with elements accessed by
textual field designators. For example,

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

creates a scalar structure with three fields:

S =
name: 'Ed Plum'

score: 83
grade: 'B+'

Like everything else in the MATLAB environment, structures are arrays, so
you can insert additional elements. In this case, each element of the array is a
structure with several fields. The fields can be added one at a time,

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';

or an entire element can be added with a single statement:

S(3) = struct('name','Jerry Garcia',...
'score',70,'grade','C')

2-34

 irmgn.ir

Types of Arrays

Now the structure is large enough that only a summary is printed:

S =
1x3 struct array with fields:

name
score
grade

There are several ways to reassemble the various fields into other MATLAB
arrays. They are mostly based on the notation of a comma-separated list. If
you type

S.score

it is the same as typing

S(1).score, S(2).score, S(3).score

which is a comma-separated list.

If you enclose the expression that generates such a list within square
brackets, MATLAB stores each item from the list in an array. In this example,
MATLAB creates a numeric row vector containing the score field of each
element of structure array S:

scores = [S.score]
scores =

83 91 70

avg_score = sum(scores)/length(scores)
avg_score =

81.3333

To create a character array from one of the text fields (name, for example), call
the char function on the comma-separated list produced by S.name:

names = char(S.name)
names =

Ed Plum
Toni Miller
Jerry Garcia

2-35

 irmgn.ir

2 Language Fundamentals

Similarly, you can create a cell array from the name fields by enclosing the
list-generating expression within curly braces:

names = {S.name}
names =

'Ed Plum' 'Toni Miller' 'Jerry Garcia'

To assign the fields of each element of a structure array to separate variables
outside of the structure, specify each output to the left of the equals sign,
enclosing them all within square brackets:

[N1 N2 N3] = S.name
N1 =

Ed Plum
N2 =

Toni Miller
N3 =

Jerry Garcia

Dynamic Field Names
The most common way to access the data in a structure is by specifying the
name of the field that you want to reference. Another means of accessing
structure data is to use dynamic field names. These names express the
field as a variable expression that MATLAB evaluates at run time. The
dot-parentheses syntax shown here makes expression a dynamic field name:

structName.(expression)

Index into this field using the standard MATLAB indexing syntax. For
example, to evaluate expression into a field name and obtain the values of
that field at columns 1 through 25 of row 7, use

structName.(expression)(7,1:25)

Dynamic Field Names Example. The avgscore function shown below
computes an average test score, retrieving information from the testscores
structure using dynamic field names:

function avg = avgscore(testscores, student, first, last)
for k = first:last

scores(k) = testscores.(student).week(k);

2-36

 irmgn.ir

Types of Arrays

end
avg = sum(scores)/(last - first + 1);

You can run this function using different values for the dynamic field student.
First, initialize the structure that contains scores for a 25-week period:

testscores.Ann_Lane.week(1:25) = ...
[95 89 76 82 79 92 94 92 89 81 75 93 ...
85 84 83 86 85 90 82 82 84 79 96 88 98];

testscores.William_King.week(1:25) = ...
[87 80 91 84 99 87 93 87 97 87 82 89 ...
86 82 90 98 75 79 92 84 90 93 84 78 81];

Now run avgscore, supplying the students name fields for the testscores
structure at run time using dynamic field names:

avgscore(testscores, 'Ann_Lane', 7, 22)
ans =

85.2500

avgscore(testscores, 'William_King', 7, 22)
ans =

87.7500

2-37

 irmgn.ir

2 Language Fundamentals

2-38

 irmgn.ir

3

Mathematics

• “Linear Algebra” on page 3-2

• “Operations on Nonlinear Functions” on page 3-46

• “Multivariate Data” on page 3-49

• “Data Analysis” on page 3-50

 irmgn.ir

3 Mathematics

Linear Algebra

In this section...

“Matrices in the MATLAB Environment” on page 3-2

“Systems of Linear Equations” on page 3-11

“Inverses and Determinants” on page 3-23

“Factorizations” on page 3-27

“Powers and Exponentials” on page 3-35

“Eigenvalues” on page 3-39

“Singular Values” on page 3-43

Matrices in the MATLAB Environment

• “Creating Matrices” on page 3-2

• “Adding and Subtracting Matrices” on page 3-4

• “Vector Products and Transpose” on page 3-5

• “Multiplying Matrices” on page 3-7

• “Identity Matrix” on page 3-9

• “Kronecker Tensor Product” on page 3-9

• “Vector and Matrix Norms” on page 3-10

• “Using Multithreaded Computation with Linear Algebra Functions” on
page 3-11

Creating Matrices
The MATLAB environment uses the term matrix to indicate a variable
containing real or complex numbers arranged in a two-dimensional grid.
An array is, more generally, a vector, matrix, or higher dimensional grid
of numbers. All arrays in MATLAB are rectangular, in the sense that the
component vectors along any dimension are all the same length.

3-2

 irmgn.ir

Linear Algebra

Symbolic Math Toolbox™ software extends the capabilities of MATLAB
software to matrices of mathematical expressions.

MATLAB has dozens of functions that create different kinds of matrices.
There are two functions you can use to create a pair of 3-by-3 example
matrices for use throughout this chapter. The first example is symmetric:

A = pascal(3)

A =
1 1 1
1 2 3
1 3 6

The second example is not symmetric:

B = magic(3)

B =
8 1 6
3 5 7
4 9 2

Another example is a 3-by-2 rectangular matrix of random integers:

C = fix(10*rand(3,2))

C =
9 4
2 8
6 7

A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix, and a
scalar is a 1-by-1 matrix. The statements

u = [3; 1; 4]

v = [2 0 -1]

s = 7

3-3

 irmgn.ir

../../toolbox/symbolic/symbolic_product_page.html

3 Mathematics

produce a column vector, a row vector, and a scalar:

u =
3
1
4

v =
2 0 -1

s =
7

Adding and Subtracting Matrices
Addition and subtraction of matrices is defined just as it is for arrays, element
by element. Adding A to B, and then subtracting A from the result recovers B:

A = pascal(3);
B = magic(3);
X = A + B

X =
9 2 7
4 7 10
5 12 8

Y = X - A

Y =
8 1 6
3 5 7
4 9 2

Addition and subtraction require both matrices to have the same dimension, or
one of them be a scalar. If the dimensions are incompatible, an error results:

3-4

 irmgn.ir

Linear Algebra

C = fix(10*rand(3,2))
X = A + C
Error using plus
Matrix dimensions must agree.
w = v + s

w =
9 7 6

Vector Products and Transpose
A row vector and a column vector of the same length can be multiplied in
either order. The result is either a scalar, the inner product, or a matrix,
the outer product :

u = [3; 1; 4];
v = [2 0 -1];
x = v*u

x =
2

X = u*v

X =
6 0 -3
2 0 -1
8 0 -4

For real matrices, the transpose operation interchanges aij and aji. MATLAB
uses the apostrophe operator (') to perform a complex conjugate transpose,
and uses the dot-apostrophe operator (.') to transpose without conjugation.
For matrices containing all real elements, the two operators return the same
result.

The example matrix A is symmetric, so A' is equal to A. But, B is not symmetric:

B = magic(3);
X = B'

X =

3-5

 irmgn.ir

3 Mathematics

8 3 4
1 5 9
6 7 2

Transposition turns a row vector into a column vector:

x = v'

x =
2
0

-1

If x and y are both real column vectors, the product x*y is not defined, but
the two products

x'*y

and

y'*x

are the same scalar. This quantity is used so frequently, it has three different
names: inner product, scalar product, or dot product.

For a complex vector or matrix, z, the quantity z' not only transposes the
vector or matrix, but also converts each complex element to its complex
conjugate. That is, the sign of the imaginary part of each complex element
changes. So if

z = [1+2i 7-3i 3+4i; 6-2i 9i 4+7i]
z =

1.0000 + 2.0000i 7.0000 - 3.0000i 3.0000 + 4.0000i
6.0000 - 2.0000i 0 + 9.0000i 4.0000 + 7.0000i

then

z'
ans =

1.0000 - 2.0000i 6.0000 + 2.0000i
7.0000 + 3.0000i 0 - 9.0000i
3.0000 - 4.0000i 4.0000 - 7.0000i

3-6

 irmgn.ir

Linear Algebra

The unconjugated complex transpose, where the complex part of each element
retains its sign, is denoted by z.':

z.'
ans =

1.0000 + 2.0000i 6.0000 - 2.0000i
7.0000 - 3.0000i 0 + 9.0000i
3.0000 + 4.0000i 4.0000 + 7.0000i

For complex vectors, the two scalar products x'*y and y'*x are complex
conjugates of each other, and the scalar product x'*x of a complex vector
with itself is real.

Multiplying Matrices
Multiplication of matrices is defined in a way that reflects composition of
the underlying linear transformations and allows compact representation of
systems of simultaneous linear equations. The matrix product C = AB is
defined when the column dimension of A is equal to the row dimension of B,
or when one of them is a scalar. If A is m-by-p and B is p-by-n, their product
C is m-by-n. The product can actually be defined using MATLAB for loops,
colon notation, and vector dot products:

A = pascal(3);
B = magic(3);
m = 3; n = 3;
for i = 1:m

for j = 1:n
C(i,j) = A(i,:)*B(:,j);

end
end

MATLAB uses a single asterisk to denote matrix multiplication. The next two
examples illustrate the fact that matrix multiplication is not commutative;
AB is usually not equal to BA:

X = A*B

X =
15 15 15
26 38 26

3-7

 irmgn.ir

3 Mathematics

41 70 39

Y = B*A

Y =
15 28 47
15 34 60
15 28 43

A matrix can be multiplied on the right by a column vector and on the left
by a row vector:

u = [3; 1; 4];
x = A*u

x =
8

17
30

v = [2 0 -1];
y = v*B

y =
12 -7 10

Rectangular matrix multiplications must satisfy the dimension compatibility
conditions:

C = fix(10*rand(3,2));
X = A*C

X =
17 19
31 41
51 70

Y = C*A

Error using mtimes
Inner matrix dimensions must agree.

3-8

 irmgn.ir

Linear Algebra

Anything can be multiplied by a scalar:

s = 7;
w = s*v

w =
14 0 -7

Identity Matrix
Generally accepted mathematical notation uses the capital letter I to denote
identity matrices, matrices of various sizes with ones on the main diagonal
and zeros elsewhere. These matrices have the property that AI = A and IA = A
whenever the dimensions are compatible. The original version of MATLAB
could not use I for this purpose because it did not distinguish between
uppercase and lowercase letters and i already served as a subscript and as the
complex unit. So an English language pun was introduced. The function

eye(m,n)

returns an m-by-n rectangular identity matrix and eye(n) returns an n-by-n
square identity matrix.

Kronecker Tensor Product
The Kronecker product, kron(X,Y), of two matrices is the larger matrix
formed from all possible products of the elements of X with those of Y. If X
is m-by-n and Y is p-by-q, then kron(X,Y) is mp-by-nq. The elements are
arranged in the following order:

[X(1,1)*Y X(1,2)*Y . . . X(1,n)*Y
. . .

X(m,1)*Y X(m,2)*Y . . . X(m,n)*Y]

The Kronecker product is often used with matrices of zeros and ones to build
up repeated copies of small matrices. For example, if X is the 2-by-2 matrix

X =
1 2
3 4

and I = eye(2,2) is the 2-by-2 identity matrix, then the two matrices

3-9

 irmgn.ir

3 Mathematics

kron(X,I)

and

kron(I,X)

are

1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4

and

1 2 0 0
3 4 0 0
0 0 1 2
0 0 3 4

Vector and Matrix Norms
The p-norm of a vector x,

x xp i
p p

= ()∑
1/

,

is computed by norm(x,p). This is defined by any value of p > 1, but the
most common values of p are 1, 2, and ∞. The default value is p = 2, which
corresponds to Euclidean length:

v = [2 0 -1];
[norm(v,1) norm(v) norm(v,inf)]

ans =
3.0000 2.2361 2.0000

The p-norm of a matrix A,

A
Ax

x
p

x

p

p
= max ,

3-10

 irmgn.ir

Linear Algebra

can be computed for p = 1, 2, and ∞ by norm(A,p). Again, the default value
is p = 2:

C = fix(10*rand(3,2));
[norm(C,1) norm(C) norm(C,inf)]

ans =
19.0000 14.8015 13.0000

Using Multithreaded Computation with Linear Algebra
Functions
MATLAB software supports multithreaded computation for a number
of linear algebra and element-wise numerical functions. These functions
automatically execute on multiple threads. For a function or expression to
execute faster on multiple CPUs, a number of conditions must be true:

1 The function performs operations that easily partition into sections that
execute concurrently. These sections must be able to execute with little
communication between processes. They should require few sequential
operations.

2 The data size is large enough so that any advantages of concurrent
execution outweigh the time required to partition the data and manage
separate execution threads. For example, most functions speed up only
when the array contains than several thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by
memory access time. As a general rule, complex functions speed up more
than simple functions.

The matrix multiply (X*Y) and matrix power (X^p) operators show
significant increase in speed on large double-precision arrays (on order of
10,000 elements). The matrix analysis functions det, rcond, hess, and expm
also show significant increase in speed on large double-precision arrays.

Systems of Linear Equations

• “Computational Considerations” on page 3-12

3-11

 irmgn.ir

3 Mathematics

• “General Solution” on page 3-14

• “Square Systems” on page 3-14

• “Overdetermined Systems” on page 3-17

• “Underdetermined Systems” on page 3-20

• “Using Multithreaded Computation with Systems of Linear Equations”
on page 3-22

• “Iterative Methods for Solving Systems of Linear Equations” on page 3-22

Computational Considerations
One of the most important problems in technical computing is the solution of
systems of simultaneous linear equations.

In matrix notation, the general problem takes the following form: Given two
matrices A and b, does there exist a unique matrix x, so that Ax = b or xA = b?

It is instructive to consider a 1-by-1 example. For example, does the equation

7x = 21

have a unique solution?

The answer, of course, is yes. The equation has the unique solution x = 3. The
solution is easily obtained by division:

x = 21/7 = 3.

The solution is not ordinarily obtained by computing the inverse of 7, that is
7–1 = 0.142857..., and then multiplying 7–1 by 21. This would be more work
and, if 7–1 is represented to a finite number of digits, less accurate. Similar
considerations apply to sets of linear equations with more than one unknown;
the MATLAB software solves such equations without computing the inverse
of the matrix.

Although it is not standard mathematical notation, MATLAB uses the
division terminology familiar in the scalar case to describe the solution of a
general system of simultaneous equations. The two division symbols, slash, /,
and backslash, \, correspond to the two MATLAB functions mrdivide and

3-12

 irmgn.ir

Linear Algebra

mldivide. mrdivide and mldivide are used for the two situations where the
unknown matrix appears on the left or right of the coefficient matrix:

x = b/A Denotes the solution to the matrix equation
xA = b.

x = A\b Denotes the solution to the matrix equation
Ax = b.

Think of “dividing” both sides of the equation Ax = b or xA = b by A. The
coefficient matrix A is always in the “denominator.”

The dimension compatibility conditions for x = A\b require the two matrices
A and b to have the same number of rows. The solution x then has the
same number of columns as b and its row dimension is equal to the column
dimension of A. For x = b/A, the roles of rows and columns are interchanged.

In practice, linear equations of the form Ax = b occur more frequently than
those of the form xA = b. Consequently, the backslash is used far more
frequently than the slash. The remainder of this section concentrates on the
backslash operator; the corresponding properties of the slash operator can
be inferred from the identity:

(b/A)' = (A'\b').

The coefficient matrix A need not be square. If A is m-by-n, there are three
cases:

m = n Square system. Seek an exact solution.

m > n Overdetermined system. Find a least-squares
solution.

m < n Underdetermined system. Find a basic solution
with at most m nonzero components.

The mldivide Algorithm. The mldivide operator employs different solvers
to handle different kinds of coefficient matrices. The various cases are
diagnosed automatically by examining the coefficient matrix. For more
information, see the “Algorithms” section of the mldivide reference page.

3-13

 irmgn.ir

3 Mathematics

General Solution
The general solution to a system of linear equations Ax = b describes all
possible solutions. You can find the general solution by:

1 Solving the corresponding homogeneous system Ax = 0. Do this using the
null command, by typing null(A). This returns a basis for the solution
space to Ax = 0. Any solution is a linear combination of basis vectors.

2 Finding a particular solution to the nonhomogeneous system Ax = b.

You can then write any solution to Ax = b as the sum of the particular solution
to Ax = b, from step 2, plus a linear combination of the basis vectors from
step 1.

The rest of this section describes how to use MATLAB to find a particular
solution to Ax = b, as in step 2.

Square Systems
The most common situation involves a square coefficient matrix A and a single
right-side column vector b.

Nonsingular Coefficient Matrix. If the matrix A is nonsingular, the
solution, x = A\b, is then the same size as b. For example:

A = pascal(3);
u = [3; 1; 4];
x = A\u

x =
10

-12
5

It can be confirmed that A*x is exactly equal to u.

If A and b are square and the same size, x= A\b is also that size:

b = magic(3);
X = A\b

3-14

 irmgn.ir

Linear Algebra

X =
19 -3 -1

-17 4 13
6 0 -6

It can be confirmed that A*x is exactly equal to b.

Both of these examples have exact, integer solutions. This is because the
coefficient matrix was chosen to be pascal(3), which is a full rank matrix
(nonsingular).

Singular Coefficient Matrix. A square matrix A is singular if it does not
have linearly independent columns. If A is singular, the solution to Ax = b
either does not exist, or is not unique. The backslash operator, A\b, issues
a warning if A is nearly singular and raises an error condition if it detects
exact singularity.

If A is singular and Ax = b has a solution, you can find a particular solution
that is not unique, by typing

P = pinv(A)*b

P is a pseudoinverse of A. If Ax = b does not have an exact solution, pinv(A)
returns a least-squares solution.

For example:

A = [1 3 7
-1 4 4
1 10 18]

is singular, as you can verify by typing

rank(A)

ans =

2

Since A is not full rank, it has some singular values equal to zero.

3-15

 irmgn.ir

3 Mathematics

Note For information about using pinv to solve systems with rectangular
coefficient matrices, see “Pseudoinverses” on page 3-25.

Exact Solutions

For b =[5;2;12], the equation Ax = b has an exact solution, given by

pinv(A)*b

ans =
0.3850

-0.1103
0.7066

Verify that pinv(A)*b is an exact solution by typing

A*pinv(A)*b

ans =
5.0000
2.0000

12.0000

Least-Squares Solutions

However, if b = [3;6;0], Ax = b does not have an exact solution. In this case,
pinv(A)*b returns a least-squares solution. If you type

A*pinv(A)*b

ans =
-1.0000
4.0000
2.0000

you do not get back the original vector b.

3-16

 irmgn.ir

Linear Algebra

You can determine whether Ax = b has an exact solution by finding the row
reduced echelon form of the augmented matrix [A b]. To do so for this
example, enter

rref([A b])
ans =

1.0000 0 2.2857 0
0 1.0000 1.5714 0
0 0 0 1.0000

Since the bottom row contains all zeros except for the last entry, the equation
does not have a solution. In this case, pinv(A) returns a least-squares
solution.

Overdetermined Systems
This example shows how overdetermined syetems are often encountered in
various kinds of curve fitting to experimental data.

A quantity, y, is measured at several different values of time, t, to produce
the following observations. You can enter the data and view it in a table
with the following statements.

t = [0 .3 .8 1.1 1.6 2.3]';
y = [.82 .72 .63 .60 .55 .50]';
B = table(t,y)

B =

t y
___ ____

0 0.82
0.3 0.72
0.8 0.63
1.1 0.6
1.6 0.55
2.3 0.5

3-17

 irmgn.ir

3 Mathematics

Try modeling the data with a decaying exponential function

.

The preceding equation says that the vector y should be approximated by a
linear combination of two other vectors. One is a constant vector containing
all ones and the other is the vector with components exp(-t). The unknown
coefficients, and , can be computed by doing a least-squares fit, which
minimizes the sum of the squares of the deviations of the data from the model.
There are six equations in two unknowns, represented by a 6-by-2 matrix.

E = [ones(size(t)) exp(-t)]

E =

1.0000 1.0000
1.0000 0.7408
1.0000 0.4493
1.0000 0.3329
1.0000 0.2019
1.0000 0.1003

Use the backslash operator to get the least-squares solution.

c = E\y

c =

0.4760
0.3413

In other words, the least-squares fit to the data is

3-18

 irmgn.ir

Linear Algebra

The following statements evaluate the model at regularly spaced increments
in t, and then plot the result together with the original data:

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')

E*c is not exactly equal to y, but the difference might well be less than
measurement errors in the original data.

3-19

 irmgn.ir

3 Mathematics

A rectangular matrix A is rank deficient if it does not have linearly
independent columns. If A is rank deficient, the least-squares solution to AX =
B is not unique. The backslash operator, A\B, issues a warning if A is rank
deficient and produces a least-squares solution if the system has no solution
and a basic solution if the system has infinitely many solutions.

Underdetermined Systems
This example shows how the solution to underdetermined systems is not
unique. Underdetermined linear systems involve more unknowns than
equations. The matrix left division operation in MATLAB finds a basic
solution, which has at most m nonzero components for an m-by-n coefficient
matrix.

Here is a small, random example:

R = [6 8 7 3; 3 5 4 1]
rng(0);
b = randi(8,2,1)

R =

6 8 7 3
3 5 4 1

b =

7
8

The linear system Rp = b involves two equations in four unknowns. Since
the coefficient matrix contains small integers, it is appropriate to use the
format command to display the solution in rational format. The particular
solution is obtained with

format rat
p = R\b

p =

3-20

 irmgn.ir

Linear Algebra

0
17/7
0

-29/7

One of the nonzero components is p(2) because R(:,2) is the column of R
with largest norm. The other nonzero component is p(4) because R(:,4)
dominates after R(:,2) is eliminated.

The complete general solution to the underdetermined system can be
characterized by adding p to an arbitrary linear combination of the null space
vectors, which can be found using the null function with an option requesting
a rational basis.

Z = null(R,'r')

Z =

-1/2 -7/6
-1/2 1/2
1 0
0 1

It can be confirmed that R*Z is zero and that the residual R*x - b is small
for any vector x, where

x = p + Z*q.

Since the columns of Z are the null space vectors, the product Z*q is a linear
combination of those vectors:

Z q x x
u
w

ux wx* .  






     

1 2 1 2

To illustrate, choose an arbitrary q and construct x.

q = [-2; 1];
x = p + Z*q;

Calculate the norm of the residual.

3-21

 irmgn.ir

3 Mathematics

format short
norm(R*x - b)

ans =

2.6645e-15

Using Multithreaded Computation with Systems of Linear
Equations
MATLAB software supports multithreaded computation for a number
of linear algebra and element-wise numerical functions. These functions
automatically execute on multiple threads. For a function or expression to
execute faster on multiple CPUs, a number of conditions must be true:

1 The function performs operations that easily partition into sections that
execute concurrently. These sections must be able to execute with little
communication between processes. They should require few sequential
operations.

2 The data size is large enough so that any advantages of concurrent
execution outweigh the time required to partition the data and manage
separate execution threads. For example, most functions speed up only
when the array contains several thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by
memory access time. As a general rule, complicated functions speed up
more than simple functions.

inv, lscov, linsolve, and mldivide show significant increase in speed on
large double-precision arrays (on order of 10,000 elements or more) when
multithreading is enabled.

Iterative Methods for Solving Systems of Linear Equations
If the coefficient matrix A is large and sparse, factorization methods are
generally not efficient. Iterative methods generate a series of approximate
solutions. MATLAB provides several iterative methods to handle large,
sparse input matrices.

3-22

 irmgn.ir

Linear Algebra

pcg
Preconditioned conjugate gradients method. This method is appropriate
for Hermitian positive definite coefficient matrix A.

bicg
BiConjugate Gradients Method

bicgstab
BiConjugate Gradients Stabilized Method

bicgstabl
BiCGStab(l) Method

cgs
Conjugate Gradients Squared Method

gmres
Generalized Minimum Residual Method

lsqr
LSQR Method

minres
Minimum Residual Method. This method is appropriate for Hermitian
coefficient matrix A.

qmr
Quasi-Minimal Residual Method

symmlq
Symmetric LQ Method

tfqmr
Transpose-Free QMR Method

Inverses and Determinants

• “Introduction” on page 3-24

• “Pseudoinverses” on page 3-25

3-23

 irmgn.ir

3 Mathematics

Introduction
If A is square and nonsingular, the equations AX = I and XA = I have the
same solution, X. This solution is called the inverse of A, is denoted by A-1,
and is computed by the function inv.

The determinant of a matrix is useful in theoretical considerations and some
types of symbolic computation, but its scaling and round-off error properties
make it far less satisfactory for numeric computation. Nevertheless, the
function det computes the determinant of a square matrix:

A = pascal(3)

A =
1 1 1
1 2 3
1 3 6

d = det(A)
X = inv(A)

d =
1

X =
3 -3 1

-3 5 -2
1 -2 1

Again, because A is symmetric, has integer elements, and has determinant
equal to one, so does its inverse. However,

B = magic(3)

B =
8 1 6
3 5 7
4 9 2

d = det(B)
X = inv(B)

d =

3-24

 irmgn.ir

Linear Algebra

-360

X =
0.1472 -0.1444 0.0639

-0.0611 0.0222 0.1056
-0.0194 0.1889 -0.1028

Closer examination of the elements of X, or use of format rat, would reveal
that they are integers divided by 360.

If A is square and nonsingular, then, without round-off error, X = inv(A)*B
is theoretically the same as X = A\B and Y = B*inv(A) is theoretically the
same as Y = B/A. But the computations involving the backslash and slash
operators are preferable because they require less computer time, less
memory, and have better error-detection properties.

Pseudoinverses
Rectangular matrices do not have inverses or determinants. At least one
of the equations AX = I and XA = I does not have a solution. A partial
replacement for the inverse is provided by the Moore-Penrose pseudoinverse,
which is computed by the pinv function:

format short
C = fix(10*gallery('uniformdata',[3 2],0));
X = pinv(C)

X =
0.1159 -0.0729 0.0171

-0.0534 0.1152 0.0418

The matrix

Q = X*C

Q =
1.0000 0.0000
0.0000 1.0000

is the 2-by-2 identity, but the matrix

3-25

 irmgn.ir

3 Mathematics

P = C*X

P =
0.8293 -0.1958 0.3213

-0.1958 0.7754 0.3685
0.3213 0.3685 0.3952

is not the 3-by-3 identity. However, P acts like an identity on a portion of the
space in the sense that P is symmetric, P*C is equal to C, and X*P is equal to X.

Solving a Rank-Deficient System. If A is m-by-n with m > n and full rank
n, each of the three statements

x = A\b
x = pinv(A)*b
x = inv(A'*A)*A'*b

theoretically computes the same least-squares solution x, although the
backslash operator does it faster.

However, if A does not have full rank, the solution to the least-squares
problem is not unique. There are many vectors x that minimize

norm(A*x -b)

The solution computed by x = A\b is a basic solution; it has at most r
nonzero components, where r is the rank of A. The solution computed by x =
pinv(A)*b is the minimal norm solution because it minimizes norm(x). An
attempt to compute a solution with x = inv(A'*A)*A'*b fails because A'*A
is singular.

Here is an example that illustrates the various solutions:

A = [1 2 3
4 5 6
7 8 9

10 11 12];

does not have full rank. Its second column is the average of the first and
third columns. If

b = A(:,2)

3-26

 irmgn.ir

Linear Algebra

is the second column, then an obvious solution to A*x = b is x = [0 1 0]'.
But none of the approaches computes that x. The backslash operator gives

x = A\b

Warning: Rank deficient, rank = 2, tol = 1.4594e-014.
x =

0.5000
0
0.5000

This solution has two nonzero components. The pseudoinverse approach gives

y = pinv(A)*b

y =
0.3333
0.3333
0.3333

There is no warning about rank deficiency. But norm(y) = 0.5774 is less
than norm(x) = 0.7071. Finally,

z = inv(A'*A)*A'*b

fails completely:

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 9.868649e-018.

z =
-0.8594
1.3438

-0.6875

Factorizations

• “Introduction” on page 3-28

• “Cholesky Factorization” on page 3-28

• “LU Factorization” on page 3-29

• “QR Factorization” on page 3-31

3-27

 irmgn.ir

3 Mathematics

• “Using Multithreaded Computation for Factorization” on page 3-35

Introduction
All three of the matrix factorizations discussed in this section make use of
triangularmatrices, where all the elements either above or below the diagonal
are zero. Systems of linear equations involving triangular matrices are easily
and quickly solved using either forward or back substitution.

Cholesky Factorization
The Cholesky factorization expresses a symmetric matrix as the product of a
triangular matrix and its transpose

A = R’R,

where R is an upper triangular matrix.

Not all symmetric matrices can be factored in this way; the matrices that
have such a factorization are said to be positive definite. This implies that
all the diagonal elements of A are positive and that the offdiagonal elements
are “not too big.” The Pascal matrices provide an interesting example.
Throughout this chapter, the example matrix A has been the 3-by-3 Pascal
matrix. Temporarily switch to the 6-by-6:

A = pascal(6)

A =
1 1 1 1 1 1
1 2 3 4 5 6
1 3 6 10 15 21
1 4 10 20 35 56
1 5 15 35 70 126
1 6 21 56 126 252

The elements of A are binomial coefficients. Each element is the sum of its
north and west neighbors. The Cholesky factorization is

R = chol(A)

R =

3-28

 irmgn.ir

Linear Algebra

1 1 1 1 1 1
0 1 2 3 4 5
0 0 1 3 6 10
0 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1

The elements are again binomial coefficients. The fact that R'*R is equal to A
demonstrates an identity involving sums of products of binomial coefficients.

Note The Cholesky factorization also applies to complex matrices. Any
complex matrix that has a Cholesky factorization satisfies A′= A and is said to
be Hermitian positive definite.

The Cholesky factorization allows the linear system

Ax = b

to be replaced by

R’Rx = b.

Because the backslash operator recognizes triangular systems, this can be
solved in the MATLAB environment quickly with

x = R\(R'\b)

If A is n-by-n, the computational complexity of chol(A) is O(n3), but the
complexity of the subsequent backslash solutions is only O(n2).

LU Factorization
LU factorization, or Gaussian elimination, expresses any square matrix A
as the product of a permutation of a lower triangular matrix and an upper
triangular matrix

A = LU,

3-29

 irmgn.ir

3 Mathematics

where L is a permutation of a lower triangular matrix with ones on its
diagonal and U is an upper triangular matrix.

The permutations are necessary for both theoretical and computational
reasons. The matrix

0 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥

cannot be expressed as the product of triangular matrices without
interchanging its two rows. Although the matrix

 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥

can be expressed as the product of triangular matrices, when ε is small, the
elements in the factors are large and magnify errors, so even though the
permutations are not strictly necessary, they are desirable. Partial pivoting
ensures that the elements of L are bounded by one in magnitude and that the
elements of U are not much larger than those of A.

For example:

[L,U] = lu(B)

L =
1.0000 0 0
0.3750 0.5441 1.0000
0.5000 1.0000 0

U =
8.0000 1.0000 6.0000

0 8.5000 -1.0000
0 0 5.2941

The LU factorization of A allows the linear system

A*x = b

3-30

 irmgn.ir

Linear Algebra

to be solved quickly with

x = U\(L\b)

Determinants and inverses are computed from the LU factorization using

det(A) = det(L)*det(U)

and

inv(A) = inv(U)*inv(L)

You can also compute the determinants using det(A) = prod(diag(U)),
though the signs of the determinants might be reversed.

QR Factorization
An orthogonal matrix, or a matrix with orthonormal columns, is a real matrix
whose columns all have unit length and are perpendicular to each other. If
Q is orthogonal, then

Q′Q = 1.

The simplest orthogonal matrices are two-dimensional coordinate rotations:

cos() sin()
sin() cos()

.
 
 −

⎡

⎣
⎢

⎤

⎦
⎥

For complex matrices, the corresponding term is unitary. Orthogonal and
unitary matrices are desirable for numerical computation because they
preserve length, preserve angles, and do not magnify errors.

The orthogonal, or QR, factorization expresses any rectangular matrix as the
product of an orthogonal or unitary matrix and an upper triangular matrix. A
column permutation might also be involved:

A = QR

or

AP = QR,

3-31

 irmgn.ir

3 Mathematics

where Q is orthogonal or unitary, R is upper triangular, and P is a
permutation.

There are four variants of the QR factorization—full or economy size, and
with or without column permutation.

Overdetermined linear systems involve a rectangular matrix with more rows
than columns, that is m-by-n with m > n. The full-size QR factorization
produces a square, m-by-m orthogonal Q and a rectangular m-by-n upper
triangular R:

C=gallery('uniformdata',[5 4], 0);
[Q,R] = qr(C)

Q =

0.6191 0.1406 -0.1899 -0.5058 0.5522
0.1506 0.4084 0.5034 0.5974 0.4475
0.3954 -0.5564 0.6869 -0.1478 -0.2008
0.3167 0.6676 0.1351 -0.1729 -0.6370
0.5808 -0.2410 -0.4695 0.5792 -0.2207

R =

1.5346 1.0663 1.2010 1.4036
0 0.7245 0.3474 -0.0126
0 0 0.9320 0.6596
0 0 0 0.6648
0 0 0 0

In many cases, the last m – n columns of Q are not needed because they are
multiplied by the zeros in the bottom portion of R. So the economy-size QR
factorization produces a rectangular, m-by-nQ with orthonormal columns and
a square n-by-n upper triangular R. For the 5-by-4 example, this is not much
of a saving, but for larger, highly rectangular matrices, the savings in both
time and memory can be quite important:

[Q,R] = qr(C,0)
Q =

3-32

 irmgn.ir

Linear Algebra

0.6191 0.1406 -0.1899 -0.5058
0.1506 0.4084 0.5034 0.5974
0.3954 -0.5564 0.6869 -0.1478
0.3167 0.6676 0.1351 -0.1729
0.5808 -0.2410 -0.4695 0.5792

R =

1.5346 1.0663 1.2010 1.4036
0 0.7245 0.3474 -0.0126
0 0 0.9320 0.6596
0 0 0 0.6648

In contrast to the LU factorization, the QR factorization does not require any
pivoting or permutations. But an optional column permutation, triggered by
the presence of a third output argument, is useful for detecting singularity
or rank deficiency. At each step of the factorization, the column of the
remaining unfactored matrix with largest norm is used as the basis for that
step. This ensures that the diagonal elements of R occur in decreasing order
and that any linear dependence among the columns is almost certainly be
revealed by examining these elements. For the small example given here,
the second column of C has a larger norm than the first, so the two columns
are exchanged:

[Q,R,P] = qr(C)

Q =
-0.3522 0.8398 -0.4131
-0.7044 -0.5285 -0.4739
-0.6163 0.1241 0.7777

R =
-11.3578 -8.2762

0 7.2460
0 0

P =
0 1
1 0

3-33

 irmgn.ir

3 Mathematics

When the economy-size and column permutations are combined, the third
output argument is a permutation vector, rather than a permutation matrix:

[Q,R,p] = qr(C,0)

Q =
-0.3522 0.8398
-0.7044 -0.5285
-0.6163 0.1241

R =
-11.3578 -8.2762

0 7.2460

p =
2 1

The QR factorization transforms an overdetermined linear system into an
equivalent triangular system. The expression

norm(A*x - b)

equals

norm(Q*R*x - b)

Multiplication by orthogonal matrices preserves the Euclidean norm, so this
expression is also equal to

norm(R*x - y)

where y = Q'*b. Since the last m-n rows of R are zero, this expression breaks
into two pieces:

norm(R(1:n,1:n)*x - y(1:n))

and

norm(y(n+1:m))

3-34

 irmgn.ir

Linear Algebra

When A has full rank, it is possible to solve for x so that the first of these
expressions is zero. Then the second expression gives the norm of the residual.
When A does not have full rank, the triangular structure of Rmakes it possible
to find a basic solution to the least-squares problem.

Using Multithreaded Computation for Factorization
MATLAB software supports multithreaded computation for a number
of linear algebra and element-wise numerical functions. These functions
automatically execute on multiple threads. For a function or expression to
execute faster on multiple CPUs, a number of conditions must be true:

1 The function performs operations that easily partition into sections that
execute concurrently. These sections must be able to execute with little
communication between processes. They should require few sequential
operations.

2 The data size is large enough so that any advantages of concurrent
execution outweigh the time required to partition the data and manage
separate execution threads. For example, most functions speed up only
when the array contains several thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by
memory access time. As a general rule, complex functions speed up more
than simple functions.

lu and qr show significant increase in speed on large double-precision arrays
(on order of 10,000 elements).

Powers and Exponentials

• “Positive Integer Powers” on page 3-36

• “Inverse and Fractional Powers” on page 3-36

• “Element-by-Element Powers” on page 3-36

• “Exponentials” on page 3-37

3-35

 irmgn.ir

3 Mathematics

Positive Integer Powers
If A is a square matrix and p is a positive integer, A^p effectively multiplies
A by itself p-1 times. For example:

A = [1 1 1;1 2 3;1 3 6]

A =

1 1 1
1 2 3
1 3 6

X = A^2

X =
3 6 10
6 14 25

10 25 46

Inverse and Fractional Powers
If A is square and nonsingular, A^(-p) effectively multiplies inv(A) by itself
p-1 times:

Y = A^(-3)

Y =

145.0000 -207.0000 81.0000
-207.0000 298.0000 -117.0000

81.0000 -117.0000 46.0000

Fractional powers, like A^(2/3), are also permitted; the results depend upon
the distribution of the eigenvalues of the matrix.

Element-by-Element Powers
The .^ operator produces element-by-element powers. For example:

X = A.^2

3-36

 irmgn.ir

Linear Algebra

A =
1 1 1
1 4 9
1 9 36

Exponentials
The function

sqrtm(A)

computes A^(1/2) by a more accurate algorithm. The m in sqrtm
distinguishes this function from sqrt(A), which, like A.^(1/2), does its job
element-by-element.

A system of linear, constant coefficient, ordinary differential equations can be
written

where x = x(t) is a vector of functions of t and A is a matrix independent of t.
The solution can be expressed in terms of the matrix exponential

.

The function

expm(A)

computes the matrix exponential. An example is provided by the 3-by-3
coefficient matrix,

A = [0 -6 -1; 6 2 -16; -5 20 -10]

A =

0 -6 -1
6 2 -16

-5 20 -10

3-37

 irmgn.ir

3 Mathematics

and the initial condition, x(0).

x0 = [1 1 1]'

x0 =

1
1
1

The matrix exponential is used to compute the solution, x(t), to the differential
equation at 101 points on the interval

X = [];
for t = 0:.01:1

X = [X expm(t*A)*x0];
end

A three-dimensional phase plane plot shows the solution spiraling in towards
the origin. This behavior is related to the eigenvalues of the coefficient matrix.

plot3(X(1,:),X(2,:),X(3,:),'-o')

3-38

 irmgn.ir

Linear Algebra

Eigenvalues

• “Eigenvalue Decomposition” on page 3-40

• “Multiple Eigenvalues” on page 3-41

• “Schur Decomposition” on page 3-42

3-39

 irmgn.ir

3 Mathematics

Eigenvalue Decomposition
An eigenvalue and eigenvector of a square matrix A are, respectively, a scalar
λ and a nonzero vector υ that satisfy

Aυ = λυ.

With the eigenvalues on the diagonal of a diagonal matrix Λ and the
corresponding eigenvectors forming the columns of a matrix V, you have

AV = VΛ.

If V is nonsingular, this becomes the eigenvalue decomposition

A = VΛV–1.

A good example is provided by the coefficient matrix of the ordinary
differential equation of the previous section:

A =
0 -6 -1
6 2 -16

-5 20 -10

The statement

lambda = eig(A)

produces a column vector containing the eigenvalues. For this matrix, the
eigenvalues are complex:

lambda =
-3.0710
-2.4645+17.6008i
-2.4645-17.6008i

The real part of each of the eigenvalues is negative, so eλt approaches zero
as t increases. The nonzero imaginary part of two of the eigenvalues,
±ω, contributes the oscillatory component, sin(ωt), to the solution of the
differential equation.

3-40

 irmgn.ir

Linear Algebra

With two output arguments, eig computes the eigenvectors and stores the
eigenvalues in a diagonal matrix:

[V,D] = eig(A)

V =
-0.8326 0.2003 - 0.1394i 0.2003 + 0.1394i
-0.3553 -0.2110 - 0.6447i -0.2110 + 0.6447i
-0.4248 -0.6930 -0.6930

D =
-3.0710 0 0

0 -2.4645+17.6008i 0
0 0 -2.4645-17.6008i

The first eigenvector is real and the other two vectors are complex conjugates
of each other. All three vectors are normalized to have Euclidean length,
norm(v,2), equal to one.

The matrix V*D*inv(V), which can be written more succinctly as V*D/V, is
within round-off error of A. And, inv(V)*A*V, or V\A*V, is within round-off
error of D.

Multiple Eigenvalues
Some matrices do not have an eigenvector decomposition. These matrices
are not diagonalizable. For example:

A = [6 12 19
-9 -20 -33
4 9 15]

For this matrix

[V,D] = eig(A)

produces

V =

-0.4741 -0.4082 -0.4082
0.8127 0.8165 0.8165

3-41

 irmgn.ir

3 Mathematics

-0.3386 -0.4082 -0.4082

D =

-1.0000 0 0
0 1.0000 0
0 0 1.0000

There is a double eigenvalue at λ = 1. The second and third columns of V are
the same. For this matrix, a full set of linearly independent eigenvectors
does not exist.

Schur Decomposition
The MATLAB advanced matrix computations do not require eigenvalue
decompositions. They are based, instead, on the Schur decomposition

A = USUT.

where U is an orthogonal matrix and S is a block upper triangular matrix
with 1-by-1 and 2-by-2 blocks on the diagonal. The eigenvalues are revealed
by the diagonal elements and blocks of S, while the columns of U provide a
basis with much better numerical properties than a set of eigenvectors. The
Schur decomposition of this defective example is

[U,S] = schur(A)

U =
-0.4741 0.6648 0.5774
0.8127 0.0782 0.5774

-0.3386 -0.7430 0.5774

S =
-1.0000 20.7846 -44.6948

0 1.0000 -0.6096
0 0 1.0000

The double eigenvalue is contained in the lower 2-by-2 block of S.

3-42

 irmgn.ir

Linear Algebra

Note If A is complex, schur returns the complex Schur form, which is upper
triangular with the eigenvalues of A on the diagonal.

Singular Values
A singular value and corresponding singular vectors of a rectangular matrix A
are, respectively, a scalar σ and a pair of vectors u and v that satisfy

Av = σu
ATu = σv.

With the singular values on the diagonal of a diagonal matrix Σ and the
corresponding singular vectors forming the columns of two orthogonal
matrices U and V, you have

AV = UΣ
ATU = VΣ.

Since U and V are orthogonal, this becomes the singular value decomposition

A = UΣVT.

The full singular value decomposition of anm-by-nmatrix involves an m-by-m
U, an m-by-n Σ, and an n-by-n V. In other words, U and V are both square and
Σ is the same size as A. If A has many more rows than columns, the resulting
U can be quite large, but most of its columns are multiplied by zeros in Σ. In
this situation, the economy sized decomposition saves both time and storage
by producing an m-by-n U, an n-by-n Σ and the same V.

The eigenvalue decomposition is the appropriate tool for analyzing a matrix
when it represents a mapping from a vector space into itself, as it does for an
ordinary differential equation. However, the singular value decomposition
is the appropriate tool for analyzing a mapping from one vector space into
another vector space, possibly with a different dimension. Most systems of
simultaneous linear equations fall into this second category.

If A is square, symmetric, and positive definite, then its eigenvalue and
singular value decompositions are the same. But, as A departs from symmetry

3-43

 irmgn.ir

3 Mathematics

and positive definiteness, the difference between the two decompositions
increases. In particular, the singular value decomposition of a real matrix
is always real, but the eigenvalue decomposition of a real, nonsymmetric
matrix might be complex.

For the example matrix

A =
9 4
6 8
2 7

the full singular value decomposition is

[U,S,V] = svd(A)

U =

0.6105 -0.7174 0.3355
0.6646 0.2336 -0.7098
0.4308 0.6563 0.6194

S =

14.9359 0
0 5.1883
0 0

V =

0.6925 -0.7214
0.7214 0.6925

You can verify that U*S*V' is equal to A to within round-off error. For this
small problem, the economy size decomposition is only slightly smaller:

[U,S,V] = svd(A,0)

U =

3-44

 irmgn.ir

Linear Algebra

0.6105 -0.7174
0.6646 0.2336
0.4308 0.6563

S =

14.9359 0
0 5.1883

V =

0.6925 -0.7214
0.7214 0.6925

Again, U*S*V' is equal to A to within round-off error.

3-45

 irmgn.ir

3 Mathematics

Operations on Nonlinear Functions

In this section...

“Function Handles” on page 3-46

“Function Functions” on page 3-46

Function Handles
You can create a handle to any MATLAB function, and then use that handle
as a means of referencing the function. A function handle is typically passed
in an argument list to other functions, which can then execute, or evaluate,
the function using the handle.

Construct a function handle in MATLAB using the at sign, @, before the
function name. The following example creates a function handle for the sin
function and assigns it to the variable fhandle:

fhandle = @sin;

You can call a function by means of its handle in the same way that you would
call the function using its name. The syntax is

fhandle(arg1, arg2, ...);

The function plot_fhandle, shown below, receives a function handle and
data, generates y-axis data using the function handle, and plots it:

function plot_fhandle(fhandle, data)
plot(data, fhandle(data))

When you call plot_fhandle with a handle to the sin function and the
argument shown below, the resulting evaluation produces a sine wave plot:

plot_fhandle(@sin, -pi:0.01:pi)

Function Functions
A class of functions called “function functions” works with nonlinear functions
of a scalar variable. That is, one function works on another function. The
function functions include

3-46

 irmgn.ir

Operations on Nonlinear Functions

• Zero finding

• Optimization

• Quadrature

• Ordinary differential equations

MATLAB represents the nonlinear function by the file that defines it.
For example, here is a simplified version of the function humps from the
matlab/demos folder:

function y = humps(x)
y = 1./((x-.3).^2 + .01) + 1./((x-.9).^2 + .04) - 6;

Evaluate this function at a set of points in the interval 0 ≤ x ≤ 1 with

x = 0:.002:1;
y = humps(x);

Then plot the function with

plot(x,y)

3-47

 irmgn.ir

3 Mathematics

The graph shows that the function has a local minimum near x = 0.6. The
function fminsearch finds the minimizer, the value of x where the function
takes on this minimum. The first argument to fminsearch is a function
handle to the function being minimized and the second argument is a rough
guess at the location of the minimum:

p = fminsearch(@humps,.5)
p =

0.6370

To evaluate the function at the minimizer,

humps(p)

ans =
11.2528

Numerical analysts use the terms quadrature and integration to distinguish
between numerical approximation of definite integrals and numerical
integration of ordinary differential equations. MATLAB quadrature routines
are quad and quadl. The statement

Q = quadl(@humps,0,1)

computes the area under the curve in the graph and produces

Q =
29.8583

Finally, the graph shows that the function is never zero on this interval. So,
if you search for a zero with

z = fzero(@humps,.5)

you will find one outside the interval

z =
-0.1316

3-48

 irmgn.ir

Multivariate Data

Multivariate Data
MATLAB uses column-oriented analysis for multivariate statistical data.
Each column in a data set represents a variable and each row an observation.
The (i,j)th element is the ith observation of the jth variable.

As an example, consider a data set with three variables:

• Heart rate

• Weight

• Hours of exercise per week

For five observations, the resulting array might look like

D = [72 134 3.2
81 201 3.5
69 156 7.1
82 148 2.4
75 170 1.2]

The first row contains the heart rate, weight, and exercise hours for patient 1,
the second row contains the data for patient 2, and so on. Now you can apply
many MATLAB data analysis functions to this data set. For example, to
obtain the mean and standard deviation of each column, use

mu = mean(D), sigma = std(D)

mu =
75.8 161.8 3.48

sigma =
5.6303 25.499 2.2107

For a list of the data analysis functions available in MATLAB, type

help datafun

If you have access to the Statistics Toolbox™ software, type

help stats

3-49

 irmgn.ir

3 Mathematics

Data Analysis

Introduction
Every data analysis has some standard components:

• Preprocessing — Consider outliers and missing values, and smooth data
to identify possible models.

• Summarizing — Compute basic statistics to describe the overall location,
scale, and shape of the data.

• Visualizing — Plot data to identify patterns and trends.

• Modeling — Give data trends fuller descriptions, suitable for predicting
new values.

Data analysis moves among these components with two basic goals in mind:

1 Describe the patterns in the data with simple models that lead to accurate
predictions.

2 Understand the relationships among variables that lead to the model.

This section explains how to carry out a basic data analysis in the MATLAB
environment.

Preprocessing Data
This example shows how to preprocess data for analysis.

Overview

Begin a data analysis by loading data into suitable MATLAB® container
variables and sorting out the "good" data from the "bad." This is a preliminary
step that assures meaningful conclusions in subsequent parts of the analysis.

Loading the Data

Begin by loading the data in count.dat:

load count.dat

3-50

 irmgn.ir

Data Analysis

The 24-by-3 array count contains hourly traffic counts (the rows) at three
intersections (the columns) for a single day.

Missing Data

The MATLAB NaN (Not a Number) value is normally used to represent
missing data. NaN values allow variables with missing data to maintain
their structure - in this case, 24-by-1 vectors with consistent indexing across
all three intersections.

Check the data at the third intersection for NaN values using the isnan
function:

c3 = count(:,3); % Data at intersection 3
c3NaNCount = sum(isnan(c3))

c3NaNCount =

0

isnan returns a logical vector the same size as c3, with entries indicating the
presence (1) or absence (0) of NaN values for each of the 24 elements in the
data. In this case, the logical values sum to 0, so there are no NaN values
in the data.

NaN values are introduced into the data in the section on Outliers.

Outliers

Outliers are data values that are dramatically different from patterns in the
rest of the data. They might be due to measurement error, or they might
represent significant features in the data. Identifying outliers, and deciding
what to do with them, depends on an understanding of the data and its source.

One common method for identifying outliers is to look for values more than
a certain number of standard deviations from the mean . The following

3-51

 irmgn.ir

3 Mathematics

code plots a histogram of the data at the third intersection together with lines
at and + , for = 1, 2:

bin_counts = hist(c3); % Histogram bin counts
N = max(bin_counts); % Maximum bin count
mu3 = mean(c3); % Data mean
sigma3 = std(c3); % Data standard deviation

hist(c3) % Plot histogram
hold on
plot([mu3 mu3],[0 N],'r','LineWidth',2) % Mean
X = repmat(mu3+(1:2)*sigma3,2,1);
Y = repmat([0;N],1,2);
plot(X,Y,'g','LineWidth',2) % Standard deviations
legend('Data','Mean','Stds')
hold off

3-52

 irmgn.ir

Data Analysis

The plot shows that some of the data are more than two standard deviations
above the mean. If you identify these data as errors (not features), replace
them with NaN values as follows:

outliers = (c3 - mu3) > 2*sigma3;
c3m = c3; % Copy c3 to c3m
c3m(outliers) = NaN; % Add NaN values

Smoothing and Filtering

3-53

 irmgn.ir

3 Mathematics

A time-series plot of the data at the third intersection (with the outlier
removed in Outliers) results in the following plot:

plot(c3m,'o-')
hold on

The NaN value at hour 20 appears as a gap in the plot. This handling of NaN
values is typical of MATLAB plotting functions.

3-54

 irmgn.ir

Data Analysis

Noisy data shows random variations about expected values. You might want
to smooth the data to reveal its main features before building a model. Two
basic assumptions underlie smoothing:

- The relationship between the predictor (time) and the response (traffic
volume) is smooth.

- The smoothing algorithm results in values that are better estimates of
expected values because the noise has been reduced.

Apply a simple moving average smoother to the data using the MATLAB
convn function:

span = 3; % Size of the averaging window
window = ones(span,1)/span;
smoothed_c3m = convn(c3m,window,'same');

h = plot(smoothed_c3m,'ro-');
legend('Data','Smoothed Data')

3-55

 irmgn.ir

3 Mathematics

The extent of the smoothing is controlled with the variable span. The
averaging calculation returns NaN values whenever the smoothing window
includes the NaN value in the data, thus increasing the size of the gap in the
smoothed data.

The filter function is also used for smoothing data:

smoothed2_c3m = filter(window,1,c3m);

delete(h)

3-56

 irmgn.ir

Data Analysis

plot(smoothed2_c3m,'ro-');

The smoothed data are shifted from the previous plot. convn with the 'same'
parameter returns the central part of the convolution, the same length as the
data. filter returns the initial part of the convolution, the same length as
the data. Otherwise, the algorithms are identical.

Smoothing estimates the center of the distribution of response values at
each value of the predictor. It invalidates a basic assumption of many
fitting algorithms, namely, that the errors at each value of the predictor are

3-57

 irmgn.ir

3 Mathematics

independent. Accordingly, you can use smoothed data to identify a model, but
avoid using smoothed data to fit a model.

Summarizing Data
This example shows how to summarize data.

Overview

Many MATLAB® functions enable you to summarize the overall location,
scale, and shape of a data sample.

One of the advantages of working in MATLAB® is that functions operate on
entire arrays of data, not just on single scalar values. The functions are said
to be vectorized. Vectorization allows for both efficient problem formulation,
using array-based data, and efficient computation, using vectorized statistical
functions.

Measures of Location

Summarize the location of a data sample by finding a "typical" value.
Common measures of location or "central tendency" are computed by the
functions mean, median, and mode:

load count.dat
x1 = mean(count)
x2 = median(count)
x3 = mode(count)

x1 =

32.0000 46.5417 65.5833

x2 =

23.5000 36.0000 39.0000

3-58

 irmgn.ir

Data Analysis

x3 =

11 9 9

Like all of its statistical functions, the MATLAB® functions above summarize
data across observations (rows) while preserving variables (columns). The
functions compute the location of the data at each of the three intersections
in a single call.

Measures of Scale

There are many ways to measure the scale or "dispersion" of a data sample.
The MATLAB® functions max, min, std, and var compute some common
measures:

dx1 = max(count)-min(count)
dx2 = std(count)
dx3 = var(count)

dx1 =

107 136 250

dx2 =

25.3703 41.4057 68.0281

dx3 =

1.0e+03 *

0.6437 1.7144 4.6278

Like all of its statistical functions, the MATLAB® functions above summarize
data across observations (rows) while preserving variables (columns). The

3-59

 irmgn.ir

3 Mathematics

functions compute the scale of the data at each of the three intersections
in a single call.

Shape of a Distribution

The shape of a distribution is harder to summarize than its location or
scale. The MATLAB® hist function plots a histogram that provides a visual
summary:

figure
hist(count)
legend('Intersection 1',...

'Intersection 2',...
'Intersection 3')

3-60

 irmgn.ir

Data Analysis

Parametric models give analytic summaries of distribution shapes.
Exponential distributions, with parameter mu given by the data mean, are a
good choice for the traffic data:

c1 = count(:,1); % Data at intersection 1
[bin_counts,bin_locations] = hist(c1);
bin_width = bin_locations(2) - bin_locations(1);
hist_area = (bin_width)*(sum(bin_counts));

figure

3-61

 irmgn.ir

3 Mathematics

hist(c1)
hold on

mu1 = mean(c1);
exp_pdf = @(t)(1/mu1)*exp(-t/mu1); % Integrates

% to 1
t = 0:150;
y = exp_pdf(t);
plot(t,(hist_area)*y,'r','LineWidth',2)
legend('Distribution','Exponential Fit')

3-62

 irmgn.ir

Data Analysis

Methods for fitting general parametric models to data distributions are beyond
the scope of this section. Statistics Toolbox™ software provides functions for
computing maximum likelihood estimates of distribution parameters.

Visualizing Data

• “Overview” on page 3-63

• “2-D Scatter Plots” on page 3-63

• “3-D Scatter Plots” on page 3-66

• “Scatter Plot Arrays” on page 3-68

• “Exploring Data in Graphs” on page 3-69

Overview
You can use many MATLAB graph types for visualizing data patterns and
trends. Scatter plots, described in this section, help to visualize relationships
among the traffic data at different intersections. Data exploration tools let
you query and interact with individual data points on graphs.

Note This section continues the data analysis from “Summarizing Data”
on page 3-58.

2-D Scatter Plots
A two-dimensional scatter plot, created with the scatter function, shows the
relationship between the traffic volume at the first two intersections:

load count.dat
c1 = count(:,1); % Data at intersection 1
c2 = count(:,2); % Data at intersection 2

figure
scatter(c1,c2,'filled')
xlabel('Intersection 1')
ylabel('Intersection 2')

3-63

 irmgn.ir

3 Mathematics

The covariance, computed by the cov function measures the strength of the
linear relationship between the two variables (how tightly the data lies along
a least-squares line through the scatter):

C12 = cov([c1 c2])

C12 =

1.0e+03 *

3-64

 irmgn.ir

Data Analysis

0.6437 0.9802
0.9802 1.7144

The results are displayed in a symmetric square matrix, with the covariance
of the ith and jth variables in the (i, j)th position. The ith diagonal element
is the variance of the ith variable.

Covariances have the disadvantage of depending on the units used to measure
the individual variables. You can divide a covariance by the standard
deviations of the variables to normalize values between +1 and –1. The
corrcoef function computes correlation coefficients:

R12 = corrcoef([c1 c2])

R12 =

1.0000 0.9331
0.9331 1.0000

r12 = R12(1,2) % Correlation coefficient

r12 =

0.9331

r12sq = r12^2 % Coefficient of determination

r12sq =

0.8707

3-65

 irmgn.ir

3 Mathematics

Because it is normalized, the value of the correlation coefficient is readily
comparable to values for other pairs of intersections. Its square, the coefficient
of determination, is the variance about the least-squares line divided by
the variance about the mean. Thus, it is the proportion of variation in the
response (in this case, the traffic volume at intersection 2) that is eliminated
or statistically explained by a least-squares line through the scatter.

3-D Scatter Plots
A three-dimensional scatter plot, created with the scatter3 function, shows
the relationship between the traffic volume at all three intersections. Use the
variables c1, c2, and c3 that you created in the previous step:

figure
c3 = count(:,3); % Data at intersection 3
scatter3(c1,c2,c3,'filled')
xlabel('Intersection 1')
ylabel('Intersection 2')
zlabel('Intersection 3')

3-66

 irmgn.ir

Data Analysis

Measure the strength of the linear relationship among the variables in the
three-dimensional scatter by computing eigenvalues of the covariance matrix
with the eig function:

vars = eig(cov([c1 c2 c3]))

vars =

1.0e+03 *

3-67

 irmgn.ir

3 Mathematics

0.0442
0.1118
6.8300

explained = max(vars)/sum(vars)

explained =

0.9777

The eigenvalues are the variances along the principal components of the data.
The variable explainedmeasures the proportion of variation explained by the
first principal component, along the axis of the data. Unlike the coefficient
of determination for two-dimensional scatters, this measure distinguishes
predictor and response variables.

Scatter Plot Arrays
Use the plotmatrix function to make comparisons of the relationships
between multiple pairs of intersections:

figure
plotmatrix(count)

3-68

 irmgn.ir

Data Analysis

The plot in the (i, j)th position of the array is a scatter with the ith variable on
the vertical axis and the jth variable on the horizontal axis. The plot in the
ith diagonal position is a histogram of the ith variable.

Exploring Data in Graphs
Using your mouse, you can pick observations on almost any MATLAB graph
with two tools from the figure toolbar:

• Data Cursor

3-69

 irmgn.ir

3 Mathematics

• Data Brushing

These tools each place you in exploratory modes in which you can select data
points on graphs to identify their values and create workspace variables to
contain specific observations. When you use data brushing, you can also copy,
remove or replace the selected observations.

For example, make a scatter plot of the first and third columns of count:

load count.dat
scatter(count(:,1),count(:,3))

Select the Data Cursor Tool and click the rightmost data point. A datatip
displaying the point’s x and y value is placed there.

3-70

 irmgn.ir

Data Analysis

Datatips display x-, y-, and z- (for three-dimensional plots) coordinates by
default. You can drag a datatip from one data point to another to see new
values or add additional datatips by right-clicking a datatip and using the
context menu. You can also customize the text that datatips display using
MATLAB code.

Data brushing is a related feature that lets you highlight one or more
observations on a graph by clicking or dragging. To enter data brushing

mode, click the left side of the Data Brushing tool on the figure toolbar.
Clicking the arrow on the right side of the tool icon drops down a color palette
for selecting the color with which to brush observations. This figure shows
the same scatter plot as the previous figure, but with all observations beyond
one standard deviation of the mean (as identified using the Tools > Data
Statistics GUI) brushed in red.

scatter(count(:,1),count(:,3))

3-71

 irmgn.ir

3 Mathematics

After you brush data observations, you can perform the following operations
on them:

• Delete them.

• Replace them with constant values.

• Replace them with NaN values.

• Drag or copy, and paste them to the Command Window.

• Save them as workspace variables.

For example, use the Data Brush context menu or the
Tools > Brushing > Create new variable option to create a new
variable called count13high.

3-72

 irmgn.ir

Data Analysis

A new variable in the workspace results:

count13high

count13high =
61 186
75 180

114 257

Linked plots, or data linking, is a feature closely related to data brushing. A
plot is said to be linked when it has a live connection to the workspace data it
depicts. The copies of variables stored in a plot object’s XData, YData, (and,
where appropriate, ZData), automatically updated whenever the workspace
variables to which they are linked change or are deleted. This causes the
graphs on which they appear to update automatically.

Linking plots to variables lets you track specific observations through
different presentations of them. When you brush data points in linked plots,
brushing one graph highlights the same observations in every graph that is
linked to the same variables.

3-73

 irmgn.ir

3 Mathematics

Data linking establishes immediate, two-way communication between
figures and workspace variables, in the same way that the Variable Editor
communicates with workspace variables. You create links by activating the

Data Linking tool on a figure’s toolbar. Activating this tool causes the
Linked Plot information bar, displayed in the next figure, to appear at the top
of the plot (possibly obscuring its title). You can dismiss the bar (shown in
the following figure) without unlinking the plot; it does not print and is not
saved with the figure.

The following two graphs depict scatter plot displays of linked data after
brushing some observations on the left graph. The common variable, count
carries the brush marks to the right figure. Even though the right graph
is not in data brushing mode, it displays brush marks because it is linked
to its variables.

figure
scatter(count(:,1),count(:,2))
xlabel ('count(:,1)')
ylabel ('count(:,2)')
figure
scatter(count(:,3),count(:,2))
xlabel ('count(:,3)')
ylabel ('count(:,2)')

3-74

 irmgn.ir

Data Analysis

The right plot shows that the brushed observations are more linearly related
than in the left plot.

Brushed data observations appear highlighted in the brushing color when you
display those variables in the Variable Editor, as you can see here:

openvar count

3-75

 irmgn.ir

3 Mathematics

In the Variable Editor, you can alter any values of linked plot data, and the
graphs will reflect your edits. To brush data observation from the Variable

Editor, click its Brushing Tool button. If the variable you brush is
currently depicted in a linked plot, the observations you brush highlight in
the plot, as well as in the Variable Editor. When you brush a variable that is
a column in a matrix, the other columns in that row are also brushed. That
is, you can brush individual observations in a row or column vector, but all

3-76

 irmgn.ir

Data Analysis

columns in a matrix highlight in any row you brush, not just the observations
you click.

Modeling Data

• “Overview” on page 3-77

• “Polynomial Regression” on page 3-77

• “General Linear Regression” on page 3-78

Overview
Parametric models translate an understanding of data relationships into
analytic tools with predictive power. Polynomial and sinusoidal models are
simple choices for the up and down trends in the traffic data.

Polynomial Regression
Use the polyfit function to estimate coefficients of polynomial models, then
use the polyval function to evaluate the model at arbitrary values of the
predictor.

The following code fits the traffic data at the third intersection with a
polynomial model of degree six:

load count.dat
c3 = count(:,3); % Data at intersection 3
tdata = (1:24)';
p_coeffs = polyfit(tdata,c3,6);

figure
plot(c3,'o-')
hold on
tfit = (1:0.01:24)';
yfit = polyval(p_coeffs,tfit);
plot(tfit,yfit,'r-','LineWidth',2)
legend('Data','Polynomial Fit','Location','NW')

3-77

 irmgn.ir

3 Mathematics

The model has the advantage of being simple while following the up-and-down
trend. The accuracy of its predictive power, however, is questionable,
especially at the ends of the data.

General Linear Regression
Assuming that the data are periodic with a 12-hour period and a peak around
hour 7, it is reasonable to fit a sinusoidal model of the form:

y a b t= + −cos((/)())2 12 7π

3-78

 irmgn.ir

Data Analysis

The coefficients a and b appear linearly. Use the MATLAB® mldivide
(backslash) operator to fit general linear models:

load count.dat
c3 = count(:,3); % Data at intersection 3
tdata = (1:24)';
X = [ones(size(tdata)) cos((2*pi/12)*(tdata-7))];
s_coeffs = X\c3;

figure
plot(c3,'o-')
hold on
tfit = (1:0.01:24)';
yfit = [ones(size(tfit)) cos((2*pi/12)*(tfit-7))]*s_coeffs;
plot(tfit,yfit,'r-','LineWidth',2)
legend('Data','Sinusoidal Fit','Location','NW')

3-79

 irmgn.ir

3 Mathematics

Use the lscov function to compute statistics on the fit, such as estimated
standard errors of the coefficients and the mean squared error:

[s_coeffs,stdx,mse] = lscov(X,c3)

s_coeffs =

65.5833
73.2819

3-80

 irmgn.ir

Data Analysis

stdx =

8.9185
12.6127

mse =

1.9090e+03

Check the assumption of a 12-hour period in the data with a periodogram,
computed using the fft function:

Fs = 1; % Sample frequency (per hour)
n = length(c3); % Window length
Y = fft(c3); % DFT of data
f = (0:n-1)*(Fs/n); % Frequency range
P = Y.*conj(Y)/n; % Power of the DFT

figure
plot(f,P)
xlabel('Frequency')
ylabel('Power')

predicted_f = 1/12

predicted_f =

0.0833

3-81

 irmgn.ir

3 Mathematics

The peak near 0.0833 supports the assumption, although it occurs at a
slightly higher frequency. The model can be adjusted accordingly.

See Also isnan | convn | filter | mean | median | mode | max | min | std | var |
hist | scatter | cov | corrcoef | scatter3 | eig | plotmatrix | polyfit
| polyval | mldivide | lscov | fft

3-82

 irmgn.ir

4

Graphics

• “Basic Plotting Functions” on page 4-2

• “Creating Mesh and Surface Plots” on page 4-17

• “Plotting Image Data” on page 4-24

• “Printing Graphics” on page 4-26

• “Working with Handle Graphics Objects” on page 4-29

 irmgn.ir

4 Graphics

Basic Plotting Functions

In this section...

“Creating a Plot” on page 4-2

“Plotting Multiple Data Sets in One Graph” on page 4-3

“Specifying Line Styles and Colors” on page 4-5

“Plotting Lines and Markers” on page 4-7

“Graphing Imaginary and Complex Data” on page 4-8

“Adding Plots to an Existing Graph” on page 4-9

“Figure Windows” on page 4-11

“Displaying Multiple Plots in One Figure” on page 4-11

“Controlling the Axes” on page 4-12

“Adding Axis Labels and Titles” on page 4-14

“Saving Figures” on page 4-15

Creating a Plot
The plot function has different forms, depending on the input arguments.

• If y is a vector, plot(y) produces a piecewise linear graph of the elements
of y versus the index of the elements of y.

• If you specify two vectors as arguments, plot(x,y) produces a graph of
y versus x.

For example, these statements use the colon operator to create a vector of
x values ranging from 0 to 2π, compute the sine of these values, and plot
the result:

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

Add axis labels and a title.

4-2

 irmgn.ir

Basic Plotting Functions

xlabel('x = 0:2\pi')
ylabel('Sine of x')
title('Plot of the Sine Function','FontSize',12)

The characters \pi create the symbol π and the FontSize property increases
the size the text used for the title:

Plotting Multiple Data Sets in One Graph
Multiple x-y pair arguments create multiple graphs with a single call to plot.
MATLAB® uses a different color for each line.

For example, these statements plot three related functions of x :

x = 0:pi/100:2*pi;
y = sin(x);
y2 = sin(x-.25);
y3 = sin(x-.5);

4-3

 irmgn.ir

4 Graphics

plot(x,y,x,y2,x,y3)

The legend function provides an easy way to identify the individual lines:

legend('sin(x)','sin(x-.25)','sin(x-.5)')

4-4

 irmgn.ir

Basic Plotting Functions

Specifying Line Styles and Colors
It is possible to specify color, line styles, and markers (such as plus signs or
circles) when you plot your data using the plot command:

plot(x,y,'color_style_marker')

color_style_marker is a string containing from one to four characters
(enclosed in single quotes) constructed from a color, a line style, and a marker
type. For example,

4-5

 irmgn.ir

4 Graphics

plot(x,y,'r:+')

plots the data using a red-dotted line and places a +marker at each data point.

The strings are composed of combinations of the following elements.

Type Values Meanings

Color 'c'
'm'
'y'
'r'
'g'
'b'
'w'
'k'

cyan
magenta
yellow
red
green
blue
white
black

Line style '-'
'--'
':'
'.-'
no
character

solid
dashed
dotted
dash-dot
no line

Marker type '+'
'o'
'*'
'x'
's'
'd'
'^'
'v'
'>'
'<'
'p'
'h'
no
character

plus mark
unfilled circle
asterisk
letter x
filled square
filled diamond
filled upward triangle
filled downward triangle
filled right-pointing triangle
filled left-pointing triangle
filled pentagram
filled hexagram
no marker

4-6

 irmgn.ir

Basic Plotting Functions

Plotting Lines and Markers
If you specify a marker type, but not a line style, MATLAB creates the graph
using only markers, but no line. For example,

plot(x,y,'ks')

plots black squares at each data point, but does not connect the markers
with a line.

The statement

plot(x,y,'r:+')

plots a red-dotted line and places plus sign markers at each data point.

Placing Markers at Every Tenth Data Point
You can use fewer data points to plot the markers than you use to plot the
lines. This example plots the data twice using a different number of points
for the dotted line and marker plots:

x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')

4-7

 irmgn.ir

4 Graphics

Graphing Imaginary and Complex Data
When you pass complex values as arguments to plot, MATLAB ignores the
imaginary part, except when you pass a single complex argument. For this
special case, the command is a shortcut for a graph of the real part versus the
imaginary part. Therefore,

plot(Z)

where Z is a complex vector or matrix, is equivalent to

plot(real(Z),imag(Z))

For example,

t = 0:pi/10:2*pi;
plot(exp(i*t),'-o')
axis equal

4-8

 irmgn.ir

Basic Plotting Functions

draws a 20-sided polygon with little circles at the vertices. The axis equal
command makes the individual tick-mark increments on the x- and y-axes the
same length, which makes this plot more circular in appearance.

Adding Plots to an Existing Graph
The hold command enables you to add plots to an existing graph. When
you type,

hold on

MATLAB does not replace the existing graph when you issue another plotting
command. Instead, MATLAB combines the new graph with the current graph.

For example, these statements first create a contour plot of the peaks
function, then superimpose a pcolor (pseudocolor) plot of the same function:

% Obtain data from evaluating peaks function

4-9

 irmgn.ir

4 Graphics

[x,y,z] = peaks;
% Create pseudocolor plot
pcolor(x,y,z)
% Remove edge lines a smooth colors
shading interp
% Hold the current graph
hold on
% Add the contour graph to the pcolor graph
contour(x,y,z,20,'k')
% Return to default
hold off

The hold on command combines the pcolor plot with the contour plot in
one figure.

4-10

 irmgn.ir

Basic Plotting Functions

Figure Windows
Graphing functions automatically open a new figure window if there are no
figure windows already created. If there are multiple figure windows open,
MATLAB uses the one that is designated as the “current figure” (the last
figure used or clicked on).

To make an existing figure window the current figure, you can click the mouse
while the pointer is in that window or you can type,

figure(n)

where n is the number in the figure title bar.

To open a new figure window and make it the current figure, type

figure

Clearing the Figure for a New Plot
When a figure already exists, most plotting commands clear the axes and use
this figure to create the new plot. However, these commands do not reset
figure properties, such as the background color or the colormap. If you have
set any figure properties in the previous plot, you might want to use the clf
command with the reset option,

clf reset

before creating your new plot to restore the figure’s properties to their
defaults.

Displaying Multiple Plots in One Figure
The subplot command enables you to display multiple plots in the same
window or print them on the same piece of paper. Typing

subplot(m,n,p)

partitions the figure window into an m-by-n matrix of small subplots and
selects the pth subplot for the current plot. The plots are numbered along the
first row of the figure window, then the second row, and so on. For example,
these statements plot data in four different subregions of the figure window:

4-11

 irmgn.ir

4 Graphics

t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1); mesh(X)
subplot(2,2,2); mesh(Y)
subplot(2,2,3); mesh(Z)
subplot(2,2,4); mesh(X,Y,Z)

Controlling the Axes
The axis command provides a number of options for setting the scaling,
orientation, and aspect ratio of graphs.

4-12

 irmgn.ir

Basic Plotting Functions

Automatic Axis Limits and Tick Marks
By default, MATLAB finds the maxima and minima of the data and chooses
the axis limits to span this range. MATLAB selects the limits and axis tick
mark values to produce a graph that clearly displays the data. However, you
can set your own limits using the axis or xlim, ylim, and zlim functions.

Note Changing the limits of one axis can cause other limits to change to
better represent the data. To disable automatic limit setting, enter the axis
manual command.

Setting Axis Limits
The axis command enables you to specify your own limits:

axis([xmin xmax ymin ymax])

or for three-dimensional graphs,

axis([xmin xmax ymin ymax zmin zmax])

Use the command

axis auto

to enable automatic limit selection again.

Setting the Axis Aspect Ratio
The axis command also enables you to specify a number of predefined modes.
For example,

axis square

makes the x-axis and y-axis the same length.

axis equal

makes the individual tick mark increments on the x-axes and y-axes the same
length. This means

plot(exp(i*[0:pi/10:2*pi]))

4-13

 irmgn.ir

4 Graphics

followed by either axis square or axis equal turns the oval into a proper
circle:

axis auto normal

returns the axis scaling to its default automatic mode.

Setting Axis Visibility
You can use the axis command to make the axis visible or invisible.

axis on

makes the axes visible. This is the default.

axis off

makes the axes invisible.

Setting Grid Lines
The grid command toggles grid lines on and off. The statement

grid on

turns the grid lines on, and

grid off

turns them back off again.

Adding Axis Labels and Titles
The xlabel, ylabel, and zlabel commands add x-, y-, and z-axis labels. The
title command adds a title at the top of the figure and the text function
inserts text anywhere in the figure.

You can produce mathematical symbols using LaTeX notation in the text
string, as the following example illustrates:

t = -pi:pi/100:pi;
y = sin(t);
plot(t,y)

4-14

 irmgn.ir

Basic Plotting Functions

axis([-pi pi -1 1])
xlabel('-\pi \leq {\itt} \leq \pi')
ylabel('sin(t)')
title('Graph of the sine function')
text(0.5,-1/3,'{\itNote the odd symmetry.}')

The location of the text string is defined in axes units (that is, the same units
as the data). The annotation function enables you to place text in normalized
figure units.

Saving Figures
Save a figure by selecting Save from the File menu. This writes the figure
to a file, including property data, its menus, uicontrols, and all annotations
(i.e., the entire window). If you have not saved the figure before, the Save
As dialog displays. This dialog box provides options to save the figure as a
FIG-file or export it to a graphics format.

4-15

 irmgn.ir

4 Graphics

If you have previously saved the figure, using Save again saves the figure
“silently,” without displaying the Save As dialog.

To save a figure using a standard graphics format for use with other
applications, such as TIFF or JPG, select Save As (or Export Setup, if you
want additional control) from the File menu.

Note Whenever you specify a format for saving a figure, that file format is
used again the next time you save that figure or a new one. If you do not want
to save in the previously used format, use Save As and be sure to set the
Save as type drop-down menu to the kind of file you want to write.

You can also save from the command line—use the saveas command,
including any options to save the figure in a different format. The more
restricted hgexport command, which saves figures to either bitmap or
metafile files, depending on the rendering method in effect, is also available.

Saving Workspace Data
You can save the variables in your workspace by selecting Save Workspace
As from the figure File menu. You can reload saved data using the Import
Data item in the figure File menu. MATLAB supports a variety of data file
formats, including MATLAB data files, which have a .mat extension.

Generating MATLAB Code to Recreate a Figure
You can generate MATLAB code that recreates a figure and the graph it
contains by selecting Generate code from the figure File menu. This option
is particularly useful if you have developed a graph using plotting tools and
want to create a similar graph using the same or different data.

4-16

 irmgn.ir

Creating Mesh and Surface Plots

Creating Mesh and Surface Plots

In this section...

“About Mesh and Surface Plots” on page 4-17

“Visualizing Functions of Two Variables” on page 4-17

About Mesh and Surface Plots
MATLAB defines a surface by the z-coordinates of points above a grid in the
x-y plane, using straight lines to connect adjacent points. The mesh and surf
functions display surfaces in three dimensions.

• mesh produces wireframe surfaces that color only the lines connecting the
defining points.

• surf displays both the connecting lines and the faces of the surface in color.

MATLAB colors surfaces by mapping z-data values to indexes into the figure
colormap.

Visualizing Functions of Two Variables
To display a function of two variables, z = f (x,y),

1 Generate X and Y matrices consisting of repeated rows and columns,
respectively, over the domain of the function.

2 Use X and Y to evaluate and graph the function.

The meshgrid function transforms the domain specified by a single vector or
two vectors x and y into matrices X and Y for use in evaluating functions of
two variables. The rows of X are copies of the vector x and the columns of
Y are copies of the vector y.

Example — Graphing the sinc Function
This example evaluates and graphs the two-dimensional sinc function,
sin(r)/r, between the x and y directions. R is the distance from the origin, which

4-17

 irmgn.ir

4 Graphics

is at the center of the matrix. Adding eps (a MATLAB command that returns
a small floating-point number) avoids the indeterminate 0/0 at the origin:

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z,'EdgeColor','black')

By default, MATLAB uses the current colormap to color the mesh. However,
this example uses a single-colored mesh by specifying the EdgeColor surface
property.

You can create a mesh with see-through faces by disabling hidden line
removal:

hidden off

4-18

 irmgn.ir

Creating Mesh and Surface Plots

Example — Colored Surface Plots
A surface plot is similar to a mesh plot except that the rectangular faces of the
surface are colored. The color of each face is determined by the values of Z and
the colormap (a colormap is an ordered list of colors). These statements graph
the sinc function as a surface plot, specify a colormap, and add a color bar to
show the mapping of data to color:

surf(X,Y,Z)
colormap hsv
colorbar

Making Surfaces Transparent
You can make the faces of a surface transparent to a varying degree.
Transparency (referred to as the alpha value) can be specified for the whole

4-19

 irmgn.ir

4 Graphics

object or can be based on an alphamap, which behaves similarly to colormaps.
For example,

surf(X,Y,Z)
colormap hsv
alpha(.4)

produces a surface with a face alpha value of 0.4. Alpha values range from 0
(completely transparent) to 1 (not transparent).

Illuminating Surface Plots with Lights
Lighting is the technique of illuminating an object with a directional light
source. In certain cases, this technique can make subtle differences in
surface shape easier to see. Lighting can also be used to add realism to
three-dimensional graphs.

4-20

 irmgn.ir

Creating Mesh and Surface Plots

This example uses the same surface as the previous examples, but colors it
red and removes the mesh lines. A light object is then added to the left of the
“camera” (the camera is the location in space from where you are viewing
the surface):

surf(X,Y,Z,'FaceColor','red','EdgeColor','none')
camlight left; lighting phong

Manipulating the Surface
The figure toolbar and the camera toolbar provide ways to explore
three-dimensional graphics interactively. Display the camera toolbar by
selecting Camera Toolbar from the figure View menu.

The following picture shows both toolbars with the Rotate 3D tool selected.

4-21

 irmgn.ir

4 Graphics

These tools enable you to move the camera around the surface object,
zoom, add lighting, and perform other viewing operations without issuing
commands.

The following picture shows the surface viewed by orbiting the camera toward
the bottom using Rotate 3D. You can see the tool’s cursor icon on the surface.
As you drag, the viewing azimuth and elevation read out in the lower-left
corner of the axes:.

4-22

 irmgn.ir

Creating Mesh and Surface Plots

4-23

 irmgn.ir

4 Graphics

Plotting Image Data

In this section...

“About Plotting Image Data” on page 4-24

“Reading and Writing Images” on page 4-25

About Plotting Image Data
Two-dimensional arrays can be displayed as images, where the array elements
determine brightness or color of the images. For example, the statements

load durer
whos
Name Size Bytes Class

X 648x509 2638656 double array
caption 2x28 112 char array
map 128x3 3072 double array

load the file durer.mat, adding three variables to the workspace. The matrix
X is a 648-by-509 matrix and map is a 128-by-3 matrix that is the colormap for
this image.

MAT-files, such as durer.mat, are binary files that can be created on one
platform and later read by the MATLAB software on a different platform.

The elements of X are integers between 1 and 128, which serve as indices
into the colormap, map. Then

image(X)
colormap(map)
axis image

reproduces Albrecht Dürer’s etching. A high-resolution scan of the magic
square in the upper-right corner is available in another file. Type

load detail

4-24

 irmgn.ir

Plotting Image Data

and then use the up arrow key on your keyboard to reexecute the image,
colormap, and axis commands.

Reading and Writing Images
You can read standard image files (TIFF, JPEG, BMP, and so on, using the
imread function. The type of data returned by imread depends on the type of
image you are reading.

You can write MATLAB data to a variety of standard image formats using
the imwrite function.

4-25

 irmgn.ir

4 Graphics

Printing Graphics

In this section...

“Overview of Printing” on page 4-26

“Printing from the File Menu” on page 4-26

“Exporting the Figure to a Graphics File” on page 4-27

“Using the Print Command” on page 4-27

Overview of Printing
You can print a MATLAB figure directly on a printer connected to your
computer or you can export the figure to one of the standard graphics file
formats that MATLAB supports. There are two ways to print and export
figures:

• Use the Print, Print Preview, or Export Setup GUI options under the
File menu.

• Use the print command to print or export the figure from the command
line.

The print command provides greater control over drivers and file formats.
The Print Preview dialog box gives you greater control over figure size,
proportions, placement, and page headers.

Printing from the File Menu
There are two menu options under the File menu that pertain to printing:

• The Print Preview option displays a dialog box that lets you lay out and
style figures for printing while previewing the output page, and from which
you can print the figure. It includes options that formerly were part of
the Page Setup dialog box.

• The Print option displays a dialog box that lets you choose a printer, select
standard printing options, and print the figure.

4-26

 irmgn.ir

Printing Graphics

Use Print Preview to determine whether the printed output is what you
want. Click the Print Preview dialog box Help button to display information
on how to set up the page.

Exporting the Figure to a Graphics File
The Export Setup option in the File menu opens a GUI that enables you to
set graphic characteristics, such as text size, font, and style, for figures you
save as graphics files. The Export Setup dialog lets you define and apply
templates to customize and standardize output. After setup, you can export
the figure to a number of standard graphics file formats, such as EPS, PNG,
and TIFF.

Using the Print Command
The print command provides more flexibility in the type of output sent to
the printer and allows you to control printing from function and script files.
The result can be sent directly to your default printer or stored in a specified
output file. A wide variety of output formats is available, including TIFF,
JPEG, and PNG.

For example, this statement saves the contents of the current figure window
as a PNG graphic in the file called magicsquare.png.

print -dpng magicsquare.png

4-27

 irmgn.ir

4 Graphics

To save the figure at the same size as the figure on the screen, use these
statements:

set(gcf,'PaperPositionMode','auto')
print -dpng -r0 magicsquare.png

To save the same figure as a TIFF file with a resolution of 200 dpi, use the
following command:

print -dtiff -r200 magicsquare.tiff

If you type print on the command line

print

the current figure prints on your default printer.

4-28

 irmgn.ir

Working with Handle Graphics® Objects

Working with Handle Graphics Objects

In this section...

“Graphics Objects” on page 4-29

“Setting Object Properties” on page 4-31

“Functions for Working with Objects” on page 4-34

“Specifying Axes or Figures” on page 4-35

“Finding the Handles of Existing Objects” on page 4-37

Graphics Objects
Graphics objects are the basic elements used to display graphs and user
interface components. These objects are organized into a hierarchy, as shown
by the following diagram.

When you call a plotting function, MATLAB creates the graph using various
graphics objects, such as a figure window, axes, lines, text, and so on. Each
object has a fixed set of properties, which you can use to control the behavior
and appearance of your graph.

For example, the following statement creates a figure with a white background
color and does not display the figure toolbar:

figure('Color','white','Toolbar','none')

4-29

 irmgn.ir

4 Graphics

Common Graphics Objects
When you call a function to create a graph, MATLAB creates a hierarchy of
graphics objects. For example, calling the plot function creates the following
graphics objects:

• Figure — Window that contains axes, toolbars, menus, and so on.

• Axes — Coordinate system that contains the lines representing the data

• Lineseries — Lines that represent the value of data passed to the plot
function.

• Text — Labels for axes tick marks and optional titles and annotations.

Different types of graphs use different objects to represent data. All data
objects are contained in axes and all objects (except root) are contained in
figures.

The root is an abstract object that primarily stores information about your
computer or MATLAB states. You cannot create an instance of the root object.
The handle of the root object is always 0.

Object Handles
When MATLAB creates a graphics object, MATLAB assigns an identifier
to the object. This identifier is called a handle. You can use this handle to
access the object’s properties with the set and get functions. For example,
the following statements create a graph and return a handle to a lineseries
object in h:

x = 1:10;
y = x.^3;
h = plot(x,y);

You can use the handle h to set the properties of the lineseries object. For
example, you can set its Color property:

set(h,'Color','red')

You can also specify the lineseries properties when you call the plotting
function:

h = plot(x,y,'Color','red');

4-30

 irmgn.ir

Working with Handle Graphics® Objects

You can query the lineseries properties to see the current value:

get(h,'LineWidth')

The get function returns the answer (in units of points for LineWidth):

ans =
0.5000

Finding the Properties of an Object
If you call get with only a handle, MATLAB returns a list of the object’s
properties:

get(h)

If you call set with only a handle, MATLAB returns a list of the object’s
properties with information about possible values:

set(h)

Setting Object Properties
All object properties have default values. However, you can change the
settings of some properties to customize your graph. There are two ways to
set object properties:

• Specify values for properties when you create the object.

• Set the property value on an object that already exists.

Setting Properties from Plotting Commands
You can specify object property value pairs as arguments to many plotting
functions, such as plot, mesh, and surf.

For example, plotting commands that create lineseries or surfaceplot objects
enable you to specify property name/property value pairs as arguments. The
command

[x,y,z] = peaks;
surf(x,y,z,...

'FaceColor','interp',...

4-31

 irmgn.ir

4 Graphics

'EdgeColor',[.7,.7,.7])

plots the data in the variables x, y, and z using a surfaceplot object with
interpolated face color and light gray colored edges.

Setting Properties of Existing Objects
To modify the property values of existing objects, use the set function.
Plotting functions return the handles of the data objects that they create
(lines, surfaces, images, and so on). For example, the following statements plot
a 5-by-5 matrix (creating five lineseries objects, one per column), and then set
the Marker property to square and the MarkerFaceColor property to green:

y = magic(5);
h = plot(y);
set(h,'Marker','s','MarkerFaceColor','g')

In this case, h is a vector containing five handles, one for each of the
five lineseries in the graph. The set statement sets the Marker and
MarkerFaceColor properties of all lineseries to the same values.

To set a property value on one object, index into the handle array:

set(h(1),'LineWidth',2)

Setting Multiple Property Values
If you want to set the properties of each lineseries to a different value, you
can use cell arrays to store all the data and pass it to the set command. For
example, create a plot and save the lineseries handles:

h = plot(magic(5));

Suppose you want to add different markers to each lineseries and color the
marker’s face color the same color as the lineseries. You need to define two
cell arrays—one containing the property names and the other containing
the desired values of the properties.

The prop_name cell array contains two elements:

prop_name(1) = {'Marker'};
prop_name(2) = {'MarkerFaceColor'};

4-32

 irmgn.ir

Working with Handle Graphics® Objects

The prop_values cell array contains 10 values: five values for the Marker
property and five values for the MarkerFaceColor property. Notice that
prop_values is a two-dimensional cell array. The first dimension indicates
which handle in h the values apply to and the second dimension indicates
which property the value is assigned to:

prop_values(1,1) = {'s'};
prop_values(1,2) = {get(h(1),'Color')};
prop_values(2,1) = {'d'};
prop_values(2,2) = {get(h(2),'Color')};
prop_values(3,1) = {'o'};
prop_values(3,2) = {get(h(3),'Color')};
prop_values(4,1) = {'p'};
prop_values(4,2) = {get(h(4),'Color')};
prop_values(5,1) = {'h'};
prop_values(5,2) = {get(h(5),'Color')};

The MarkerFaceColor is always assigned the value of the corresponding line’s
color (obtained by getting the lineseries Color property with the get function).

After defining the cell arrays, call set to specify the new property values:

set(h,prop_name,prop_values)

4-33

 irmgn.ir

4 Graphics

Functions for Working with Objects
This table lists functions commonly used when working with objects.

Function Purpose

allchild Find all children of specified objects.

ancestor Find ancestor of graphics object.

copyobj Copy graphics object.

delete Delete an object.

findall Find all graphics objects (including hidden handles).

4-34

 irmgn.ir

Working with Handle Graphics® Objects

Function Purpose

findobj Find the handles of objects having specified property
values.

gca Return the handle of the current axes.

gcf Return the handle of the current figure.

gco Return the handle of the current object.

get Query the values of an object’s properties.

ishandle True if the value is a valid object handle.

set Set the values of an object’s properties.

Specifying Axes or Figures
MATLAB always creates an axes or figure if one does not exist when you
execute a plotting command. However, when you are creating graphics from
a program file, it is good practice to create and specify the parent axes and
figure explicitly, particularly if others people use your program. Specifying
the parent prevents the following problems:

• Your program overwrites the graph in the current figure. A figure becomes
the current figure whenever a user clicks it.

• The current figure might be in an unexpected state and not behave as
your program expects.

The following example shows a MATLAB function that evaluates a
mathematical expression over the range specified in the input argument x,
and then plots the results. A second call to the plot function plots the mean
value of the results as a red line.

function myfunc(x)
% Evaluate the expression using the input argument
y = 1.5*cos(x) + 6*exp(-.1*x) + exp(.07*x).*sin(3*x);

% Calculate the mean
ym = mean(y);

% Create a figure, axes parented to that axes

4-35

 irmgn.ir

4 Graphics

% and the using the axes
hfig = figure('Name','Function and Mean');
hax = axes('Parent',hfig);
plot(hax,x,y)

% Hold the current plot and add a red line along the mean value
hold on
plot(hax,[min(x) max(x)],[ym ym],'Color','red')
hold off

% Add a tick label that shows the mean value
% and add a title and axis labels
ylab = get(hax,'YTick');
set(hax,'YTick',sort([ylab ym]))
title ('y = 1.5cos(x) + 6e^{-0.1x} + e^{0.07x}sin(3x)')
xlabel('X Axis'); ylabel('Y Axis')

end

First, define a value for the input argument and call the function:

x = -10:.005:40;
myfunc(x)

4-36

 irmgn.ir

Working with Handle Graphics® Objects

Finding the Handles of Existing Objects
The findobj function enables you to obtain the handles of graphics objects by
searching for objects with particular property values. With findobj you can
specify the values of any combination of properties, which makes it easy to
pick one object out of many. findobj also recognizes regular expressions.

For example, you might want to find the blue line with square marker having
blue face color. You can also specify which figures or axes to begin searching
from, if there are more than one. The following four sections provide examples
illustrating how to use findobj.

4-37

 irmgn.ir

4 Graphics

Finding All Objects of a Certain Type
Because all objects have a Type property that identifies the type of object,
you can find the handles of all occurrences of a particular type of object. For
example,

h = findobj('Type','patch');

finds the handles of all patch objects.

Finding Objects with a Particular Property
You can specify multiple properties to narrow the search. For example,

h = findobj('Type','line','Color','r','LineStyle',':');

finds the handles of all red dotted lines.

Limiting the Scope of the Search
You can specify the starting point in the object hierarchy by passing the
handle of the starting figure or axes as the first argument. For example,

h = findobj(gca,'Type','text','String','\pi/2');

finds the string π/2 only within the current axes.

Using findobj as an Argument
Because findobj returns the handles it finds, you can use it in place of the
handle argument. For example,

set(findobj('Type','line','Color','red'),'LineStyle',':')

finds all red lines and sets their line style to dotted.

4-38

 irmgn.ir

5

Programming

• “Control Flow” on page 5-2

• “Scripts and Functions” on page 5-10

 irmgn.ir

5 Programming

Control Flow

In this section...

“Conditional Control — if, else, switch” on page 5-2

“Loop Control — for, while, continue, break” on page 5-5

“Program Termination — return” on page 5-7

“Vectorization” on page 5-8

“Preallocation” on page 5-8

Conditional Control — if, else, switch
Conditional statements enable you to select at run time which block of code to
execute. The simplest conditional statement is an if statement. For example:

% Generate a random number
a = randi(100, 1);

% If it is even, divide by 2
if rem(a, 2) == 0

disp('a is even')
b = a/2;

end

if statements can include alternate choices, using the optional keywords
elseif or else. For example:

a = randi(100, 1);

if a < 30
disp('small')

elseif a < 80
disp('medium')

else
disp('large')

end

Alternatively, when you want to test for equality against a set of known
values, use a switch statement. For example:

5-2

 irmgn.ir

Control Flow

[dayNum, dayString] = weekday(date, 'long', 'en_US');

switch dayString
case 'Monday'

disp('Start of the work week')
case 'Tuesday'

disp('Day 2')
case 'Wednesday'

disp('Day 3')
case 'Thursday'

disp('Day 4')
case 'Friday'

disp('Last day of the work week')
otherwise

disp('Weekend!')
end

For both if and switch, MATLAB executes the code corresponding to the
first true condition, and then exits the code block. Each conditional statement
requires the end keyword.

In general, when you have many possible discrete, known values, switch
statements are easier to read than if statements. However, you cannot test
for inequality between switch and case values. For example, you cannot
implement this type of condition with a switch:

yourNumber = input('Enter a number: ');

if yourNumber < 0
disp('Negative')

elseif yourNumber > 0
disp('Positive')

else
disp('Zero')

end

Array Comparisons in Conditional Statements
It is important to understand how relational operators and if statements
work with matrices. When you want to check for equality between two
variables, you might use

5-3

 irmgn.ir

5 Programming

if A == B, ...

This is valid MATLAB code, and does what you expect when A and B are
scalars. But when A and B are matrices, A == B does not test if they are
equal, it tests where they are equal; the result is another matrix of 0s and 1s
showing element-by-element equality. (In fact, if A and B are not the same
size, then A == B is an error.)

A = magic(4); B = A; B(1,1) = 0;

A == B
ans =

0 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

The proper way to check for equality between two variables is to use the
isequal function:

if isequal(A, B), ...

isequal returns a scalar logical value of 1 (representing true) or 0 (false),
instead of a matrix, as the expression to be evaluated by the if function.
Using the A and B matrices from above, you get

isequal(A, B)
ans =

0

Here is another example to emphasize this point. If A and B are scalars, the
following program will never reach the “unexpected situation”. But for most
pairs of matrices, including our magic squares with interchanged columns,
none of the matrix conditions A > B, A < B, or A == B is true for all elements
and so the else clause is executed:

if A > B
'greater'

elseif A < B
'less'

elseif A == B
'equal'

5-4

 irmgn.ir

Control Flow

else
error('Unexpected situation')

end

Several functions are helpful for reducing the results of matrix comparisons
to scalar conditions for use with if, including

isequal
isempty
all
any

Loop Control — for, while, continue, break
This section covers those MATLAB functions that provide control over
program loops.

for
The for loop repeats a group of statements a fixed, predetermined number of
times. A matching end delineates the statements:

for n = 3:32
r(n) = rank(magic(n));

end
r

The semicolon terminating the inner statement suppresses repeated printing,
and the r after the loop displays the final result.

It is a good idea to indent the loops for readability, especially when they are
nested:

for i = 1:m
for j = 1:n

H(i,j) = 1/(i+j);
end

end

5-5

 irmgn.ir

5 Programming

while
The while loop repeats a group of statements an indefinite number of times
under control of a logical condition. A matching end delineates the statements.

Here is a complete program, illustrating while, if, else, and end, that uses
interval bisection to find a zero of a polynomial:

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b

x = (a+b)/2;
fx = x^3-2*x-5;
if sign(fx) == sign(fa)

a = x; fa = fx;
else

b = x; fb = fx;
end

end
x

The result is a root of the polynomial x3 - 2x - 5, namely

x =
2.09455148154233

The cautions involving matrix comparisons that are discussed in the section
on the if statement also apply to the while statement.

continue
The continue statement passes control to the next iteration of the for loop
or while loop in which it appears, skipping any remaining statements in the
body of the loop. The same holds true for continue statements in nested
loops. That is, execution continues at the beginning of the loop in which the
continue statement was encountered.

The example below shows a continue loop that counts the lines of code in the
file magic.m, skipping all blank lines and comments. A continue statement is
used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered:

5-6

 irmgn.ir

Control Flow

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line) || strncmp(line,'%',1) || ~ischar(line)

continue
end
count = count + 1;

end
fprintf('%d lines\n',count);
fclose(fid);

break
The break statement lets you exit early from a for loop or while loop. In
nested loops, break exits from the innermost loop only.

Here is an improvement on the example from the previous section. Why is
this use of break a good idea?

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b

x = (a+b)/2;
fx = x^3-2*x-5;
if fx == 0

break
elseif sign(fx) == sign(fa)

a = x; fa = fx;
else

b = x; fb = fx;
end

end
x

Program Termination — return
This section covers the MATLAB return function that enables you to
terminate your program before it runs to completion.

5-7

 irmgn.ir

5 Programming

return
return terminates the current sequence of commands and returns control to
the invoking function or to the keyboard. return is also used to terminate
keyboard mode. A called function normally transfers control to the function
that invoked it when it reaches the end of the function. You can insert a
return statement within the called function to force an early termination and
to transfer control to the invoking function.

Vectorization
One way to make your MATLAB programs run faster is to vectorize the
algorithms you use in constructing the programs. Where other programming
languages might use for loops or DO loops, MATLAB can use vector or matrix
operations. A simple example involves creating a table of logarithms:

x = .01;
for k = 1:1001

y(k) = log10(x);
x = x + .01;

end

A vectorized version of the same code is

x = .01:.01:10;
y = log10(x);

For more complicated code, vectorization options are not always so obvious.

Preallocation
If you cannot vectorize a piece of code, you can make your for loops go faster
by preallocating any vectors or arrays in which output results are stored. For
example, this code uses the function zeros to preallocate the vector created in
the for loop. This makes the for loop execute significantly faster:

r = zeros(32,1);
for n = 1:32

r(n) = rank(magic(n));
end

5-8

 irmgn.ir

Control Flow

Without the preallocation in the previous example, the MATLAB interpreter
enlarges the r vector by one element each time through the loop. Vector
preallocation eliminates this step and results in faster execution.

5-9

 irmgn.ir

5 Programming

Scripts and Functions

In this section...

“Overview” on page 5-10

“Scripts” on page 5-11

“Functions” on page 5-12

“Types of Functions” on page 5-14

“Global Variables” on page 5-16

“Command vs. Function Syntax” on page 5-16

Overview
The MATLAB product provides a powerful programming language, as well as
an interactive computational environment. You can enter commands from
the language one at a time at the MATLAB command line, or you can write a
series of commands to a file that you then execute as you would any MATLAB
function. Use the MATLAB Editor or any other text editor to create your
own function files. Call these functions as you would any other MATLAB
function or command.

There are two kinds of program files:

• Scripts, which do not accept input arguments or return output arguments.
They operate on data in the workspace.

• Functions, which can accept input arguments and return output
arguments. Internal variables are local to the function.

If you are a new MATLAB programmer, just create the program files that you
want to try out in the current folder. As you develop more of your own files,
you will want to organize them into other folders and personal toolboxes that
you can add to your MATLAB search path.

If you duplicate function names, MATLAB executes the one that occurs first
in the search path.

To view the contents of a program file, for example, myfunction.m, use

5-10

 irmgn.ir

Scripts and Functions

type myfunction

Scripts
When you invoke a script, MATLAB simply executes the commands found in
the file. Scripts can operate on existing data in the workspace, or they can
create new data on which to operate. Although scripts do not return output
arguments, any variables that they create remain in the workspace, to be
used in subsequent computations. In addition, scripts can produce graphical
output using functions like plot.

For example, create a file called magicrank.m that contains these MATLAB
commands:

% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32

r(n) = rank(magic(n));
end
r
bar(r)

Typing the statement

magicrank

causes MATLAB to execute the commands, compute the rank of the first 30
magic squares, and plot a bar graph of the result. After execution of the file is
complete, the variables n and r remain in the workspace.

5-11

 irmgn.ir

5 Programming

Functions
Functions are files that can accept input arguments and return output
arguments. The names of the file and of the function should be the same.
Functions operate on variables within their own workspace, separate from the
workspace you access at the MATLAB command prompt.

A good example is provided by rank. The file rank.m is available in the folder

toolbox/matlab/matfun

You can see the file with

type rank

Here is the file:

function r = rank(A,tol)
% RANK Matrix rank.
% RANK(A) provides an estimate of the number of linearly
% independent rows or columns of a matrix A.

5-12

 irmgn.ir

Scripts and Functions

% RANK(A,tol) is the number of singular values of A
% that are larger than tol.
% RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.

s = svd(A);
if nargin==1

tol = max(size(A)') * max(s) * eps;
end
r = sum(s > tol);

The first line of a function starts with the keyword function. It gives the
function name and order of arguments. In this case, there are up to two input
arguments and one output argument.

The next several lines, up to the first blank or executable line, are comment
lines that provide the help text. These lines are printed when you type

help rank

The first line of the help text is the H1 line, which MATLAB displays when
you use the lookfor command or request help on a folder.

The rest of the file is the executable MATLAB code defining the function. The
variable s introduced in the body of the function, as well as the variables on
the first line, r, A and tol, are all local to the function; they are separate from
any variables in the MATLAB workspace.

This example illustrates one aspect of MATLAB functions that is not
ordinarily found in other programming languages—a variable number of
arguments. The rank function can be used in several different ways:

rank(A)
r = rank(A)
r = rank(A,1.e-6)

Many functions work this way. If no output argument is supplied, the result
is stored in ans. If the second input argument is not supplied, the function
computes a default value. Within the body of the function, two quantities
named nargin and nargout are available that tell you the number of input
and output arguments involved in each particular use of the function. The
rank function uses nargin, but does not need to use nargout.

5-13

 irmgn.ir

5 Programming

Types of Functions
MATLAB offers several different types of functions to use in your
programming.

Anonymous Functions
An anonymous function is a simple form of the MATLAB function that is
defined within a single MATLAB statement. It consists of a single MATLAB
expression and any number of input and output arguments. You can define
an anonymous function right at the MATLAB command line, or within a
function or script. This gives you a quick means of creating simple functions
without having to create a file for them each time.

The syntax for creating an anonymous function from an expression is

f = @(arglist)expression

The statement below creates an anonymous function that finds the square of
a number. When you call this function, MATLAB assigns the value you pass
in to variable x, and then uses x in the equation x.^2:

sqr = @(x) x.^2;

To execute the sqr function defined above, type

a = sqr(5)
a =

25

Primary and Subfunctions
Any function that is not anonymous must be defined within a file. Each such
function file contains a required primary function that appears first, and any
number of subfunctions that can follow the primary. Primary functions have
a wider scope than subfunctions. That is, primary functions can be called
from outside of the file that defines them (for example, from the MATLAB
command line or from functions in other files) while subfunctions cannot.
Subfunctions are visible only to the primary function and other subfunctions
within their own file.

5-14

 irmgn.ir

Scripts and Functions

The rank function shown in the section on “Functions” on page 5-12 is an
example of a primary function.

Private Functions
A private function is a type of primary function. Its unique characteristic
is that it is visible only to a limited group of other functions. This type of
function can be useful if you want to limit access to a function, or when you
choose not to expose the implementation of a function.

Private functions reside in subfolders with the special name private. They
are visible only to functions in the parent folder. For example, assume the
folder newmath is on the MATLAB search path. A subfolder of newmath called
private can contain functions that only the functions in newmath can call.

Because private functions are invisible outside the parent folder, they can use
the same names as functions in other folders. This is useful if you want to
create your own version of a particular function while retaining the original in
another folder. Because MATLAB looks for private functions before standard
functions, it will find a private function named test.m before a nonprivate
file named test.m.

Nested Functions
You can define functions within the body of another function. These are said
to be nested within the outer function. A nested function contains any or
all of the components of any other function. In this example, function B is
nested in function A:

function x = A(p1, p2)
...
B(p2)

function y = B(p3)
...
end

...
end

Like other functions, a nested function has its own workspace where variables
used by the function are stored. But it also has access to the workspaces
of all functions in which it is nested. So, for example, a variable that has

5-15

 irmgn.ir

5 Programming

a value assigned to it by the primary function can be read or overwritten
by a function nested at any level within the primary. Similarly, a variable
that is assigned in a nested function can be read or overwritten by any of the
functions containing that function.

Global Variables
If you want more than one function to share a single copy of a variable, simply
declare the variable as global in all the functions. Do the same thing at
the command line if you want the base workspace to access the variable.
The global declaration must occur before the variable is actually used in a
function. Although it is not required, using capital letters for the names of
global variables helps distinguish them from other variables. For example,
create a new function in a file called falling.m:

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;

Then interactively enter the statements

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');

The two global statements make the value assigned to GRAVITY at the
command prompt available inside the function. You can then modify GRAVITY
interactively and obtain new solutions without editing any files.

Command vs. Function Syntax
You can write MATLAB functions that accept string arguments without the
parentheses and quotes. That is, MATLAB interprets

foo a b c

as

foo('a','b','c')

However, when you use the unquoted command form, MATLAB cannot return
output arguments. For example,

5-16

 irmgn.ir

Scripts and Functions

legend apples oranges

creates a legend on a plot using the strings apples and oranges as labels.
If you want the legend command to return its output arguments, then you
must use the quoted form:

[legh,objh] = legend('apples','oranges');

In addition, you must use the quoted form if any of the arguments is not
a string.

Caution While the unquoted command syntax is convenient, in some cases
it can be used incorrectly without causing MATLAB to generate an error.

Constructing String Arguments in Code
The quoted function form enables you to construct string arguments within
the code. The following example processes multiple data files, August1.dat,
August2.dat, and so on. It uses the function int2str, which converts an
integer to a character, to build the file name:

for d = 1:31
s = ['August' int2str(d) '.dat'];
load(s)
% Code to process the contents of the d-th file

end

5-17

 irmgn.ir

5 Programming

5-18

 irmgn.ir

Index

IndexSymbols and Numerics
: operator 1-11 2-21
2-D scatter plots

getting started 3-63
3-D scatter plots

getting started 3-66

A
algorithms

vectorizing 5-8
ans function 2-5
array operators 1-7 2-13
arrays 1-6

and matrices 2-12
cell 2-29
character 2-31
columnwise organization 3-49
deleting rows and columns 2-23
elements 2-11
generating with functions and operators 1-7

2-8
listing contents 1-13 2-10
multidimensional 2-27
notation for elements 2-11
preallocating 5-8
structure 2-34
variable names 2-10

arrow keys for editing commands 2-19
aspect ratio of axes 4-13
axes

managing 4-12
visibility 4-14

axis
labels 1-18 4-14
titles 4-14

axis function 4-12

B
break function 5-7
built-in functions

defined 2-15

C
cell arrays 2-29
char function 2-33
character arrays 2-31
Cholesky factorization 3-28
coefficient of determination

described 3-66
colon operator 1-11 2-21
colormap 4-19
colors

lines for plotting 1-18 4-5
command line

editing 1-3 2-19
complex numbers 2-11

plotting 4-8
concatenation

defined 1-9 2-22
of strings 2-32

constants
special 2-15

continue function 5-6
continuing statements on multiple lines 2-19
control keys for editing commands 2-19
correlation coefficient

example using corrcoef 3-65
covariance

example using cov 3-64

D
data analysis

getting started 3-50
decomposition

eigenvalue 3-40

Index-1

 irmgn.ir

Index

Schur 3-42
singular value 3-43

deleting array elements 2-23
desktop

for MATLAB 1-3
determinant of matrix 3-23
diag function 2-5
documentation 1-30
dot product 3-6

E
editing command lines 1-3 2-19
eigenvalues 3-40
eigenvectors 3-40
elements of arrays 2-11
entering matrices 2-4
examples 1-30
expressions

examples 2-16
using in MATLAB 2-10

eye
derivation of the name 3-9

F
factorization

Cholesky 3-28
Hermitian positive definite 3-29
LU 3-29
partial pivoting 3-30
positive definite 3-28
QR 3-31

figure function 4-11
figure windows 4-11

with multiple plots 1-18 4-11
find function 2-26
finding object handles 4-37
fliplr function 2-7
floating-point numbers 2-11

flow control 5-2
for loop 5-5
format

of output display 2-17
format function 2-17
function files 5-10
function functions 3-46
function handles

defined 3-46
using 3-48

function keyword 5-13
function of two variables 1-18 4-17
function program files

naming 5-12
functions

built-in, defined 2-15
calling 1-17
defined 5-12
how to find 2-14
how to find help on 1-30
variable number of arguments 5-13

G
Gaussian elimination 3-29
global variables 5-16
graphics

files 4-27
Handle Graphics 4-29
objects 4-29
printing 4-26

grids 4-14

H
Handle Graphics 4-29

finding handles 4-37
help functions 1-30
Hermitian positive definite matrix 3-29
hold function 1-18 4-9

Index-2

 irmgn.ir

Index

I
identity matrix 3-9
images 4-24
imaginary numbers 1-10 2-11
inner product 3-5
inverse of matrix 3-23

K
keys for editing in Command Window 2-19
Kronecker tensor matrix product 3-9

L
lighting 4-20
limits

axes 4-13
line continuation 2-19
line styles of plots 1-18 4-5
linear equations

minimal norm solution 3-26
overdetermined systems 3-17
rectangular systems 3-25

linear regression
getting started 3-77

linear systems of equations
full 3-11

linear transformation 3-2
local variables 5-13
logical vectors 2-25
LU factorization 3-29

M
magic function 2-7
magic square 2-5
markers 1-18 4-7
MAT-file 4-24
mathematical functions

listing advanced 2-15

listing elementary 2-14
listing matrix 2-15

MATLAB
desktop 1-3

matrices 1-6 3-1 to 3-2
as linear transformation 3-2
creating 1-6 2-20
creation 3-2
determinant 3-23
entering 2-4
identity 3-9
inverse 3-23
orthogonal 3-31
pseudoinverse 3-25
rank deficiency 3-20
symmetric 3-5
triangular 3-28

matrix 1-6 2-2
antidiagonal 2-7
main diagonal 2-6
swapping columns 1-11 2-8
transpose 2-5

matrix operations
addition and subtraction 3-4
division 3-12
exponentials 3-37
multiplication 3-7
powers 3-35
transpose 3-5

matrix products
Kronecker tensor 3-9

mesh plot 1-18 4-17
modeling data

getting started 3-77
Moore-Penrose pseudoinverse 3-25
multidimensional arrays 2-27
multiple plots per figure 1-18 4-11
multivariate data

organizing 3-49

Index-3

 irmgn.ir

Index

N
norms

vector and matrix 3-10
numbers 2-11

complex 1-10 2-11
floating-point 2-11

O
object properties 4-31
objects

finding handles 4-37
graphics 4-29

operators 2-12
colon 1-11 2-21

orthogonal matrix 3-31
outer product 3-5
output

controlling format 2-17
suppressing 1-3 2-18

overdetermined
rectangular matrices 3-17

overlaying plots 1-18 4-9

P
periodogram 3-77
plot

titles 1-18
plot function 1-18 4-2
plotting

adding plots 1-18 4-9
basic 4-2
complex data 4-8
complex numbers 4-8
contours 4-9
functions 4-2
line colors 1-18 4-5
line styles 1-18 4-5
lines and markers 1-18 4-7

mesh and surface 1-18 4-17
multiple plots 1-18 4-11
overview 1-18

polynomial regression
getting started 3-77

PostScript 4-27
preallocation 5-8
principal components 3-68
print function 4-26
printing

graphics 4-26
program files

creating 1-26 5-10
function 5-10
scripts 1-26 5-10

pseudoinverse
of matrix 3-25

Q
QR factorization 3-31

R
rank deficiency

detecting 3-33
rectangular matrices 3-20

rectangular matrices
identity 3-9
overdetermined systems 3-17
pseudoinverse 3-25
QR factorization 3-31
rank deficient 3-20
singular value decomposition 3-43

return function 5-8

S
scalar

as a matrix 3-3
scalar expansion 1-11 2-24

Index-4

 irmgn.ir

Index

scalar product 3-6
scatter plot arrays

getting started 3-68
Schur decomposition 3-42
scientific notation 2-11
script files 1-26 5-10
scripts 1-26 5-11
semicolon to suppress output 1-3 2-18
singular value matrix decomposition 3-43
solving linear systems of equations

full 3-11
special constants

infinity 2-15
not-a-number 2-15

statements
continuing on multiple lines 2-19

strings
concatenating 2-32

structures 2-34
subplot function 4-11
subscripting

with logical vectors 2-25
subscripts 1-11 2-20
sum function 2-5
suppressing output 1-3 2-18
surface plot 1-18 4-17
symmetric matrix

transpose 3-5

T
text

entering in MATLAB 2-31
TIFF 4-27
title

figure 1-18 4-14
transpose 1-7

complex conjugate 3-6
unconjugated complex 3-6

transpose function 2-5
triangular matrix 3-28

U
unitary matrices

QR factorization 3-31

V
variables 1-13 2-10

global 5-16
local 5-13

vector products
dot or scalar 3-6
outer and inner 3-5

vectorization 5-8
vectors 1-6 2-2

column and row 3-3
logical 2-25
multiplication 3-5
preallocating 5-8

visibility of axes 4-14
visualizing data

getting started 3-63

W
while loop 5-6
windows

in MATLAB 1-3
windows for plotting 4-11
wireframe

surface 1-18 4-17

Index-5

 irmgn.ir

	toc
	Quick Start
	MATLAB Product Description
	Key Features

	Desktop Basics
	Matrices and Arrays
	Array Creation
	Matrix and Array Operations
	Concatenation
	Complex Numbers

	Array Indexing
	Workspace Variables
	Character Strings
	Calling Functions
	2-D and 3-D Plots
	Line Plots
	3-D Plots
	Subplots

	Programming and Scripts
	Sample Script
	Loops and Conditional Statements
	Script Locations

	Help and Documentation

	Language Fundamentals
	Matrices and Magic Squares
	About Matrices
	Entering Matrices
	sum, transpose, and diag
	The magic Function
	Generating Matrices

	Expressions
	Variables
	Numbers
	Matrix Operators
	Array Operators
	Building Tables

	Functions
	Examples of Expressions

	Entering Commands
	The format Function
	Suppressing Output
	Entering Long Statements
	Command Line Editing

	Indexing
	Subscripts
	The Colon Operator
	Concatenation
	Deleting Rows and Columns
	Scalar Expansion
	Logical Subscripting
	The find Function

	Types of Arrays
	Multidimensional Arrays
	Cell Arrays
	Characters and Text
	Structures
	Dynamic Field Names

	Mathematics
	Linear Algebra
	Matrices in the MATLAB Environment
	Creating Matrices
	Adding and Subtracting Matrices
	Vector Products and Transpose
	Multiplying Matrices
	Identity Matrix
	Kronecker Tensor Product
	Vector and Matrix Norms
	Using Multithreaded Computation with Linear Algebra Functions

	Systems of Linear Equations
	Computational Considerations
	General Solution
	Square Systems
	Overdetermined Systems
	Underdetermined Systems
	Using Multithreaded Computation with Systems of Linear Equations
	Iterative Methods for Solving Systems of Linear Equations

	Inverses and Determinants
	Introduction
	Pseudoinverses

	Factorizations
	Introduction
	Cholesky Factorization
	LU Factorization
	QR Factorization
	Using Multithreaded Computation for Factorization

	Powers and Exponentials
	Positive Integer Powers
	Inverse and Fractional Powers
	Element-by-Element Powers
	Exponentials

	Eigenvalues
	Eigenvalue Decomposition
	Multiple Eigenvalues
	Schur Decomposition

	Singular Values

	Operations on Nonlinear Functions
	Function Handles
	Function Functions

	Multivariate Data
	Data Analysis
	Introduction
	Preprocessing Data
	Overview
	Loading the Data
	Missing Data
	Outliers
	Smoothing and Filtering
	Summarizing Data
	Overview
	Measures of Location
	Measures of Scale
	Shape of a Distribution
	Visualizing Data
	Overview
	2-D Scatter Plots
	3-D Scatter Plots
	Scatter Plot Arrays
	Exploring Data in Graphs

	Modeling Data
	Overview
	Polynomial Regression
	General Linear Regression

	Graphics
	Basic Plotting Functions
	Creating a Plot
	Plotting Multiple Data Sets in One Graph
	Specifying Line Styles and Colors
	Plotting Lines and Markers
	Placing Markers at Every Tenth Data Point

	Graphing Imaginary and Complex Data
	Adding Plots to an Existing Graph
	Figure Windows
	Clearing the Figure for a New Plot

	Displaying Multiple Plots in One Figure
	Controlling the Axes
	Automatic Axis Limits and Tick Marks
	Setting Axis Limits
	Setting the Axis Aspect Ratio
	Setting Axis Visibility
	Setting Grid Lines

	Adding Axis Labels and Titles
	Saving Figures
	Saving Workspace Data
	Generating MATLAB Code to Recreate a Figure

	Creating Mesh and Surface Plots
	About Mesh and Surface Plots
	Visualizing Functions of Two Variables
	Example — Graphing the sinc Function
	Example — Colored Surface Plots
	Making Surfaces Transparent
	Illuminating Surface Plots with Lights
	Manipulating the Surface

	Plotting Image Data
	About Plotting Image Data
	Reading and Writing Images

	Printing Graphics
	Overview of Printing
	Printing from the File Menu
	Exporting the Figure to a Graphics File
	Using the Print Command

	Working with Handle Graphics Objects
	Graphics Objects
	Common Graphics Objects
	Object Handles
	Finding the Properties of an Object

	Setting Object Properties
	Setting Properties from Plotting Commands
	Setting Properties of Existing Objects
	Setting Multiple Property Values

	Functions for Working with Objects
	Specifying Axes or Figures
	Finding the Handles of Existing Objects
	Finding All Objects of a Certain Type
	Finding Objects with a Particular Property
	Limiting the Scope of the Search
	Using findobj as an Argument

	Programming
	Control Flow
	Conditional Control — if, else, switch
	Array Comparisons in Conditional Statements

	Loop Control — for, while, continue, break
	for
	while
	continue
	break

	Program Termination — return
	return

	Vectorization
	Preallocation

	Scripts and Functions
	Overview
	Scripts
	Functions
	Types of Functions
	Anonymous Functions
	Primary and Subfunctions
	Private Functions
	Nested Functions

	Global Variables
	Command vs. Function Syntax
	Constructing String Arguments in Code

	Index

